【高数+复变函数】Laplace变换

【高数+复变函数】Laplace变换

1. 问题引入及定义

上一节:【高数+复变函数】傅里叶积分

回顾之前我们讲的傅里叶变换要满足的条件有(也就是傅里叶积分要满足的条件)

1 ∘ f ( t ) 1^{\circ} f(t) 1f(t) 在任一有限区间上满足 Dirichlet 条件

2 ∘ f ( t ) 2^{\circ} f(t) 2f(t) 在无限区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上绝对可积 (即积分 ∫ − ∞ + ∞ ∣ f ( t ) ∣ d t \int_{-\infty}^{+\infty}|f(t)| \mathrm{d} t +f(t)dt 收敛)

可这些条件相对较强,很多函数都无法满足。

例如:

  • Fourier变换存在的条件需要 实函数 f ( t ) f(t) f(t) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上绝对可积. 很多常见的初等函数(例如, 常数函数、多项式函数、正弦与余弦 函数等)都不满足这个要求
  • 很多以时间 t 为为自变量的函数,当t<0时,往往没有定义,或者不需要知道t<0的情况,而Fourier变换要求在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上都有定义。

这些条件限制了Fourier变换的应用,现在我们考虑对于任意一个函数 f ( t ) f(t) f(t), 能否经过适当地改造使其进行 Fourier 变换时克服 上述两个缺点呢?

这就使我们想到前面讲过的单位阶跃函数 u ( t ) u(t) u(t) 和指数衰减函数 e − β t ( β > 0 ) \mathrm{e}^{-\beta t}(\beta>0) eβt(β>0) 所具有的特点. 用前者乘 f ( t ) f(t) f(t) 可以使积分区间由 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 换成 [ 0 , + ∞ ) [0,+\infty) [0,+), 用后者乘 f ( t ) f(t) f(t) 就有可能使其变成绝对可积, 因此, 为了克服 Fourier 变 换上述的两个缺点, 我们自然会想到用 u ( t ) e − β t ( β > 0 ) u(t) \mathrm{e}^{-\beta t}(\beta>0) u(t)eβt(β>0) 来乘 f ( t ) f(t) f(t), 即
f ( t ) u ( t ) e − β t ( β > 0 ) . f(t) u(t) \mathrm{e}^{-\beta t} \quad(\beta>0) . f(t)u(t)eβt(β>0).
对其进行傅里叶变换
G β ( ω ) = ∫ − ∞ + ∞ f ( t ) u ( t ) e − β t e − i ω t   d t = ∫ 0 + ∞ f ( t ) e − ( β + j ω ) t d t = ∫ 0 + ∞ f ( t ) e − s t   d t \begin{aligned} G_\beta(\omega) & =\int_{-\infty}^{+\infty} f(t) u(t) \mathrm{e}^{-\beta t} \mathrm{e}^{-i \omega t} \mathrm{~d} t \\ & =\int_0^{+\infty} f(t) \mathrm{e}^{-(\beta+j \omega )t } \mathrm{d} t=\int_0^{+\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t \end{aligned} Gβ(ω)=+f(t)u(t)eβtet dt=0+f(t)e(β+)tdt=0+f(t)est dt
变换后是 s s s的函数: F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t F(s)=\int_0^{+\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t F(s)=0+f(t)est dt.

由此式所确定的函数 F ( s ) F(s) F(s), 实际上是由 f ( t ) f(t) f(t) 通过一种新的变换得来的, 这种 变换我们称为 Laplace 变换.

定义 :设函数 f ( t ) f(t) f(t) t ⩾ 0 t \geqslant 0 t0 时有定义, 而且积分
∫ 0 + ∞ f ( t ) e − s t   d t ( s  是一个复参量  ) \int_0^{+\infty} f(t) \mathrm{e}^{-st} \mathrm{~d} t \quad(s \text { 是一个复参量 }) 0+f(t)est dt(s 是一个复参量 )
复平面 s s s 的某一区域内收敛, 由此积分所确定的函数记为
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t , F(s)=\int_0^{+\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t, F(s)=0+f(t)est dt,
则称上式为函数 f ( t ) f(t) f(t) 的 Laplace 变换式. 记为 F ( s ) = C [ f ( t ) ] F(s)=\mathscr{C}[f(t)] F(s)=C[f(t)]
f ( t ) f(t) f(t) F ( s ) F(s) F(s) 的 Laplace 逆变换 (或称 为象原函数), 记为 f ( t ) = C − 1 [ F ( s ) ] f(t)=\mathscr{C}^{-1}[F(s)] f(t)=C1[F(s)]

不同于在实轴上定义的Fourier,Laplace是定义在复平面上的。

2. 存在定理

探究一个函数满足什么条件时,Laplace变换是存在的

Laplace 变换的存在定理 若函数 f ( t ) f(t) f(t) 满足下列条件:
1 ∘ 1^{\circ} 1 t ⩾ 0 t \geqslant 0 t0 的任一有限区间上连续或分段连续;
2 ∘ 2^{\circ} 2 t → + ∞ t \rightarrow+\infty t+ 时, f ( t ) f(t) f(t) 的增长速度不超过某一指数函数, 亦即存在常数 M > 0 M>0 M>0 c ⩾ 0 c \geqslant 0 c0,使得
∣ f ( t ) ∣ ⩽ M e c t , 0 ⩽ t < + ∞ |f(t)| \leqslant M \mathrm{e}^{c t}, \quad 0 \leqslant t<+\infty f(t)Mect,0t<+
成立 (满足此条件的函数, 称它的增大是不超过指数级的, c c c 为它的增长指数). 则 f ( t ) f(t) f(t) 的 Laplace 变换
F ( s ) = ∫ 0 + ∞ f ( t ) e − s x   d t F(s)=\int_0^{+\infty} f(t) \mathrm{e}^{-sx} \mathrm{~d} t F(s)=0+f(t)esx dt
在半平面 Re ⁡ ( s ) > c \operatorname{Re}(s)>c Re(s)>c 上一定存在

右端的积分在 Re ⁡ ( s ) ⩾ c 1 > c \operatorname{Re}(s) \geqslant c_1>c Re(s)c1>c 上绝对收敛而且 一致收敛, 并且在 Re ⁡ ( s ) > c \operatorname{Re}(s)>c Re(s)>c 的半平面内, F ( s ) F(s) F(s) 为解析函数…

证明不做要求,是证明 f ( t ) e − s x f(t) \mathrm{e}^{-sx} f(t)esx绝对可积

上述存在定理是充分非必要条件,也就是在 Re ⁡ ( s ) < c \operatorname{Re}(s)<c Re(s)<c时也可能存在,以及 c < 0 c<0 c<0时也可能成立,也就有一个新定理:

定理2 如果 ∫ 0 + ∞ f ( t ) e − s t   d t \int_0^{+\infty} f(t) e^{-s t} \mathrm{~d} t 0+f(t)est dt s 1 = β 1 + i ω 1 s_1=\beta_1+i \omega_1 s1=β1+iω1 处收敛, 则这个积分在 Re ⁡ s > β 1 \operatorname{Re} s>\beta_1 Res>β1 上处处收敛,且 由这个积分确定的函数 F ( s ) F(s) F(s) Re ⁡ s > β 1 \operatorname{Re} s>\beta_1 Res>β1 上解析; 如果 ∫ 0 + ∞ f ( t ) e − s t   d t \int_0^{+\infty} f(t) e^{-s t} \mathrm{~d} t 0+f(t)est dt s 2 = β 2 + i ω 2 s_2=\beta_2+i \omega_2 s2=β2+iω2 处发散, 则这个积分在 Re ⁡ s < β 2 \operatorname{Re} s<\beta_2 Res<β2 上处处发散.

3. 常见Laplace变换

例 1 求单位阶跃函数 u ( t ) = { 0 , t < 0 , 1 , t > 0 u(t)=\left\{\begin{array}{l}0, t<0, \\ 1, t>0\end{array}\right. u(t)={0,t<0,1,t>0 的 Laplace 变换.

解: L [ u ( t ) ] = ∫ 0 + ∞ e − s t   d t \mathscr{L} [u(t)]=\int_0^{+\infty} \mathrm{e}^{-s t} \mathrm{~d} t L[u(t)]=0+est dt

其中 e − s t = e − t ( β + j ω ) = e − t β ( c o s w t − i s i n w t ) e^{-st}=e^{-t(\beta+j \omega )}=e^{-t\beta}(coswt-isinwt) est=et(β+)=e(coswtisinwt)

∣ ( c o s w t − i s i n w t ) ∣ |(coswt-isinwt)| (coswtisinwt)有界,所以保证 e − t β e^{-t\beta} e收敛即可,即需要满足 R e ( s ) = β > 0 Re(s)=\beta>0 Re(s)=β>0
又有 ∫ 0 + ∞ e − s t   d t = − 1 s e − , t ∣ 0 + ∞ = 1 s 又有\int_0^{+\infty} \mathrm{e}^{-s t} \mathrm{~d} t=-\left.\frac{1}{s} \mathrm{e}^{-, t}\right|_0 ^{+\infty}=\frac{1}{s} 又有0+est dt=s1e,t 0+=s1
所以 L [ u ( t ) ] = 1 s ( Re ⁡ ( s ) > 0 ) . \mathscr{L}[u(t)]=\frac{1}{s} \quad(\operatorname{Re}(s)>0) . L[u(t)]=s1(Re(s)>0).

例 2 求函数 f ( t ) = e k t f(t)=\mathrm{e}^{k t} f(t)=ekt 的 Laplace 变换 ( k k k 为实数).

这个积分在 Re ⁡ ( s ) > k \operatorname{Re}(s)>k Re(s)>k 时收敛, 而且有
∫ 0 + ∞ e − ( s − k ) t   d t = 1 s − k , \int_0^{+\infty} \mathrm{e}^{-(s-k) t} \mathrm{~d} t=\frac{1}{s-k}, 0+e(sk)t dt=sk1,
所以
L [ e k t ] = 1 s − k ( Re ⁡ ( s ) > k ) . \mathscr{L}\left[\mathrm{e}^{k t}\right]=\frac{1}{s-k}(\operatorname{Re}(s)>k) . L[ekt]=sk1(Re(s)>k).
例 3 求正弦函数 f ( t ) = sin ⁡ k t f(t)=\sin k t f(t)=sinkt ( k k k 为实数) 的 Laplace 变换.


L [ sin ⁡ k t ] = ∫ 0 + ∞ sin ⁡ k t e − s t   d t = k s 2 + k 2 ( Re ⁡ ( s ) > 0 ) . 可用两次分部积分证明 \mathscr{L}[\sin k t] =\int_0^{+\infty} \sin k t \mathrm{e}^{-s t} \mathrm{~d} t \\ =\frac{k}{s^2+k^2} \quad(\operatorname{Re}(s)>0) .可用两次分部积分证明 L[sinkt]=0+sinktest dt=s2+k2k(Re(s)>0).可用两次分部积分证明
同理可得余弦函数 f ( t ) = cos ⁡ k t f(t)=\cos k t f(t)=coskt ( k k k 为实数) 的 Laplace 变换
L [ cos ⁡ k t ] = s s 2 + k 2 ( Re ⁡ ( s ) > 0 ) . \mathscr{L}[\cos k t]=\frac{s}{s^2+k^2} \quad(\operatorname{Re}(s)>0) . L[coskt]=s2+k2s(Re(s)>0).
例4 周期函数和 δ \delta δ函数的Laplace变换

以周期性三角波为例( f ( t + 2 b ) = f ( t ) f(t+2 b)=f(t) f(t+2b)=f(t)):
f ( t ) = { t , 0 ⩽ t < b , 2 b − t , b ⩽ t < 2 b f(t)= \begin{cases}t, & 0 \leqslant t<b, \\ 2 b-t, & b \leqslant t<2 b\end{cases} f(t)={t,2bt,0t<b,bt<2b
image-20230526224159301
E [ f ( t ) ] = ∫ 0 + ∞ f ( t ) e − s t   d t = ∫ 0 2 b f ( t ) e − s t   d t + ∫ 2 b 4 b f ( t ) e − s t   d t + ∫ 4 h 6 t f ( t ) e − s t   d t + ⋯ + ∫ 2 k b 2 ( k + 1 ) b f ( t ) e − s t   d t + ⋯ \begin{aligned} \mathscr{E}[f(t)]= & \int_0^{+\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t \\ = & \int_0^{2 b} f(t) \mathrm{e}^{-s t} \mathrm{~d} t+\int_{2 b}^{4 b} f(t) \mathrm{e}^{-s t} \mathrm{~d} t+\int_{4 h}^{6 t} f(t) \mathrm{e}^{-s t} \mathrm{~d} t \\ & +\cdots+\int_{2 k b}^{2(k+1) b} f(t) \mathrm{e}^{-s t} \mathrm{~d} t+\cdots \end{aligned} E[f(t)]==0+f(t)est dt02bf(t)est dt+2b4bf(t)est dt+4h6tf(t)est dt++2kb2(k+1)bf(t)est dt+
t = τ + 2 k b t=\tau+2 k b t=τ+2kb, 则
∫ 2 k b 2 ( k + 1 ) b f ( t ) e − s t   d t = ∫ 0 2 b f ( τ + 2 k b ) e − s ( τ + 2 k b ) d τ = e − 2 k b s ∫ 0 2 b f ( τ ) e − s τ d τ , \begin{aligned} \int_{2 k b}^{2(k+1) b} f(t) \mathrm{e}^{-s t} \mathrm{~d} t & =\int_0^{2 b} f(\tau+2 k b) \mathrm{e}^{-s(\tau+2 k b)} \mathrm{d} \tau \\ & =\mathrm{e}^{-2 k b s} \int_0^{2 b} f(\tau) \mathrm{e}^{-s \tau} \mathrm{d} \tau, \end{aligned} 2kb2(k+1)bf(t)est dt=02bf(τ+2kb)es(τ+2kb)dτ=e2kbs02bf(τ)esτdτ,
所以原式可转化成:
L [ f ( t ) ] = ∑ k = 0 + ∞ e − 2 k b s ∫ 0 2 b f ( t ) e − s t   d t = 1 1 − e − 2 b s ∫ 0 2 b f ( t ) e − s t   d t \mathscr{L}[f(t)]=\sum_{k=0}^{+\infty} \mathrm{e}^{-2 k b s} \int_0^{2 b} f(t) \mathrm{e}^{-s t} \mathrm{~d} t =\frac{1}{1-\mathrm{e}^{-2 b s}} \int_0^{2 b} f(t) \mathrm{e}^{-s t} \mathrm{~d} t L[f(t)]=k=0+e2kbs02bf(t)est dt=1e2bs102bf(t)est dt
之后根据不同函数的 f ( t ) f(t) f(t)计算后式即可。

例5 求单位脉冲函数 δ ( t ) \delta(t) δ(t) 的Laplace变换

首先考虑 t t t的定义域问题:

如果在 t = 0 t=0 t=0 处包含了单位脉冲函数时, 则
∫ 0 − 0 + f ( t ) e − s t   d t ≠ 0 , 即  L − [ f ( t ) ] ≠ L + [ f ( t ) ] .  \int_{0^{-}}^{0^{+}} f(t) e^{-s t} \mathrm{~d} t \neq 0 \text {, 即 } \mathfrak{L}_{-}[f(t)] \neq \mathfrak{L}_{+}[f(t)] \text {. } 00+f(t)est dt=0 L[f(t)]=L+[f(t)]
因此把 t ≥ 0 t \geq 0 t0 上定义的函数延拓到 t > 0 t>0 t>0 t = 0 t=0 t=0任意一个邻域内有定义, 并且把Laplace变换定义为
L [ f ( t ) ] = L − [ f ( t ) ] = ∫ 0 − + ∞ f ( t ) e − s t   d t . \mathcal{L}[f(t)]=\mathfrak{L}_{-}[f(t)]=\int_{0^{-}}^{+\infty} f(t) e^{-s t} \mathrm{~d} t . L[f(t)]=L[f(t)]=0+f(t)est dt.
之后在此拓延下再来考虑单位脉冲函数:
L [ δ ( t ) ] = L − [ δ ( t ) ] = ∫ 0 − + ∞ δ ( t ) e − s t   d t = ∫ − ∞ + ∞ δ ( t ) e − s t   d t = e − s t ∣ t = 0 = 1 \begin{aligned} \mathfrak{L}[\delta(t)] & =\mathfrak{L}_{-}[\delta(t)] \\ & =\int_{0^{-}}^{+\infty} \delta(t) e^{-s t} \mathrm{~d} t \\ & =\int_{-\infty}^{+\infty} \delta(t) e^{-s t} \mathrm{~d} t=e^{-st}|_{t=0}=1 \end{aligned} L[δ(t)]=L[δ(t)]=0+δ(t)est dt=+δ(t)est dt=estt=0=1
例6 f ( t ) = e − β t δ ( t ) − β e − β t u ( t ) ( β > 0 ) f(t)=e^{-\beta t} \delta(t)-\beta e^{-\beta t} u(t)(\beta>0) f(t)=eβtδ(t)βeβtu(t)(β>0) 的Laplace变换(其中 u ( t ) u(t) u(t) 为单位阶跃函数).

首先根据Laplace的定义,在 R e s > − β Res>-\beta Res>β时,可以进行变换:
L [ f ( t ) ] = ∫ 0 − + ∞ [ e − β t δ ( t ) − β e − β t u ( t ) ] e − s t   d t = ∫ 0 − + ∞ δ ( t ) e − ( s + β ) t   d t − β ∫ 0 + ∞ e − ( s + β ) t   d t = 1 + β e − ( β + s ) t s + β ∣ 0 + ∞ = 1 − β s + β = s s + β . \begin{aligned} \mathfrak{L}[f(t)] & =\int_{0^{-}}^{+\infty}\left[e^{-\beta t} \delta(t)-\beta e^{-\beta t} u(t)\right] e^{-s t} \mathrm{~d} t \\ & =\int_{0^{-}}^{+\infty} \delta(t) e^{-(s+\beta) t} \mathrm{~d} t-\beta \int_0^{+\infty} e^{-(s+\beta) t} \mathrm{~d} t \\ & =1+\left.\beta \frac{e^{-(\beta+s) t}}{s+\beta}\right|_0 ^{+\infty}=1-\frac{\beta}{s+\beta}=\frac{s}{s+\beta} . \end{aligned} L[f(t)]=0+[eβtδ(t)βeβtu(t)]est dt=0+δ(t)e(s+β)t dtβ0+e(s+β)t dt=1+βs+βe(β+s)t 0+=1s+ββ=s+βs.

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
作者:朱经浩,李雨生,周羚君 摘要:全书包括复变函数和积分变换的基本内容: 复平面上的复变函数、解析函数的微积分、孤立奇点的处理方法、解析函数方法的应用、保形映照、积分变换等6章。 内容简介 · · · · · · 《简明复变函数与积分变换》是作者根据长期在同济大学讲授工科“复变函数”课程的讲义编写而成。全书包括复变函数和积分变换的基本内容:复平面上的复变函数、解析函数的微积分、孤立奇点的处理方法、解析函数方法的应用、保形映照、积分变换等6章。《简明复变函数与积分变换》较为新颖地编排了这些内容,并罗列了大量重要、有趣并有一定难度的例题及其解答。 《简明复变函数与积分变换》的编写以学生易学、教师易教为宗旨,思路新颖,文字浅显易懂,适用面广。不但可作为工科相关专业的教材,也可作为其他理工科专业的教材或教学参考书,并可供各类科学技术人员参考。 目录 前 言1 复平面上的复变函数 1.1 复数和平面向量 1.2 复数的三角表示 1.3 平面点集的复数表示 1.4 复变函数的概念 习题12 解析函数的微积分 2.1 复变函数与高等数学 2.2 复变函数的导数 2.3 解析函数 2.4 初等函数 2.5 cauchy积分定理 2.6 cauchy积分公式 2.7 taylor级数 习题23 孤立奇点的处理方法 3.1 孤立奇点的定义 3.2 laurent级数 3.3 孤立奇点的分类 3.4 留数基本定理 3.5 围道积分 习题34 解析函数方法的应用 4.1 调和函数 4.2 最大模原理 4.3 辐角原理和rouche定理 4.4 解析函数的pade有理化逼近 4.5 静电场复势的解析开拓 习题45 保形映照 5.1 保形映照的概念 5.2 分式线性函数及其映照性质 5.3 初等函数所构成的保形映照 习题56 积分变换 6.1 fourier变换 6.2 laplace变换 习题6附录ⅰ 傅氏变换简表附录ⅱ 拉氏变换简表习题答案参考文献

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值