版本
linux:centos7.9 Linux xxx 4.18.0-372.9.1.el8.x86_64 #1 SMP Fri Apr 15 22:12:19 EDT 2022 x86_64 x86_64 x86_64 GNU/Linux
anaconda:Anaconda3-2022.10-Linux-x86_64
cudatoolkit:11.3.1
pytorch:1.10.1(build:cuda112py39h4de5995_0)
python:3.9.17
版本问题很重要,很多人安装失败(包括imort torch失败,或者torch.cuda.is_available()返回False等等)的原因就在于此。需要注意以下3点:
-
cudatoolkit和pytorch需要遵循官方的规定(详见:https://pytorch.org/get-started/previous-versions/)
-
其次pytorch和python也是有对应关系的,pytorch同一版本有不同的build号,其中build号中就会指明兼容的python版本。比如下图中圈出的pytorch,与之兼容的python版本是3.9:
-
很多人可能遇到过所有包都安装成功了,版本貌似也没问题,import torch也正常,但torch.cuda.is_available()总是返回False,绝大部分都是安装了针对cpu的pytorch,通过 conda list |grep pytorch 即可观察,比如有的人安装了上图中的build为cpu_py37…,如何解决?简单,在安装的时候不光指定版本,同时指定build号即可:
conda install pytorch=1.10.1=cuda112py39h4de5995_0
配置conda源
安装anaconda不再赘述,百度即可。
另外记得配置国内源,下载速度快,编辑~/.condarc即可
清华大学:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
中国科技大学:https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
安装步骤
# python
conda install python=3.9
# cudatoolkit
conda install cudatoolkit=11.3
# pytorch
conda install pytorch=1.10.1=cuda112py39h4de5995_0
验证
import torch
torch.cuda.is_available()
返回True则标明cuda环境部署成功,如下图