【Ubuntu20.04 WSL】将项目代码上传到Github基础操作

本篇文章包含的内容


添加SSH Key

通过参考Github官方文档,使用命令ssh-keygen -t ed25519 -C "your-Email@example.com"生成密钥(在Github中的官方文档中好像也没有提及使用rsa生成,如果使用rsa生成ssh密钥请使用命令ssh-keygen -t rsa -C "your-Email@example.com"),并将公钥文件.ssh/id_ed25519.pub中的内容复制到Github中添加密钥。(可以在neovim中使用:w !clip.exe命令复制整篇文档到系统剪贴板)

上传项目代码

  1. 使用cd <dir>命令转移到需要上传的项目目录下
  2. 使用git init进行给git初始化
  3. 使用git add *将所有文件添加到工作区,使用git status查看添加到工作区的文件
  4. 使用git commit -m "comment"命令将工作区的文件添加到本地git库,"comment"相当与这些文件的标签,可以任意更改。使用git ls-files查看已经存放在本地仓库的内容
  5. 关联远程仓库。同一个目录下远程仓库只需要关联一次即可。使用命令:
git remote add <link-name> <url-link-SSH>

<link-name>是关联仓库的链接的名字,可以任意更改,一般将origin作为链接名。url-link-SSH链接需要从在线仓库中找到(需要首先开启SSH密钥,测试链接是否成功使用ssh -T git@github.com):
在这里插入图片描述

在这里插入图片描述
使用git remote查看已经添加的链接,如果需要删除,使用git remote rm <link-name>删除。

  1. 把文件从本地仓库上传到远程仓库,使用<sudo> git push <link_name> <branch>。其中sudo可选(取决于操作的文件夹需要的权限),<branch>可以是main或者master(取决于想要上传到哪个分支)
### 配置 WSLUbuntu 的 NVIDIA GPU 支持 为了在 WSL 下配置 Ubuntu 并使其能够利用 NVIDIA GPU,可以按照以下方法操作: #### 1. 更新 WSL 到版本 2 确保已经安装了 WSL2,并将其作为默认版本。可以通过运行以下命令来检查当前的 WSL 版本: ```powershell wsl --list --verbose ``` 如果未启用 WSL2,则需要通过 PowerShell 使用管理员权限执行以下命令切换至 WSL2: ```powershell wsl --set-default-version 2 ``` #### 2. 安装适用于 WSL 的 NVIDIA CUDA 驱动程序 NVIDIA 提供了一个专门用于 WSL 的驱动包,可以直接从官方源下载并安装。以下是具体步骤: - **更新 APT 软件包索引** ```bash sudo apt update && sudo apt upgrade -y ``` - **安装必要的依赖项** ```bash sudo apt install -y build-essential dkms linux-headers-$(uname -r) ``` - **添加 NVIDIA PPA 源** ```bash distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ && curl -s -L https://nvidia.github.io/libnvidia-container/gpgkey | sudo apt-key add - \ && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list ``` - **再次更新软件包列表** ```bash sudo apt update ``` - **安装 NVIDIA Container Toolkit** ```bash sudo apt install -y nvidia-driver nvidia-docker2 ``` 完成上述步骤后,重启 WSL 实例以使更改生效。 #### 3. 测试 GPU 是否正常工作 验证 GPU 是否被识别和支持,可运行如下命令: ```bash nvidia-smi ``` 该命令应该返回有关 GPU 设备的信息及其状态[^1]。 #### 4. Docker 环境中的 GPU 支持 如果计划在 Docker 容器中使用 GPU 加速功能,则需进一步配置 Docker 服务以支持 NVIDIA GPU。这通常涉及重新启动 Docker 服务并将 `--gpus all` 参数传递给容器创建过程。例如: ```bash docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi ``` 此命令将在基于 CUDA 的镜像中测试 GPU 功能是否可用。 --- ### 注意事项 对于某些特定场景(如 llama-server),可能还需要调整网络设置或绑定 IP 地址以便于远程访问[^4]。此外,在初次启动新安装的 Linux 发行版时可能会遇到一些初始化问题;此时耐心等待几分钟直至系统完成初始配置是非常重要的[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Include everything

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值