第195题|收藏‼️ 本题归纳了判定单调性常用基本方法与理论|函数强化训练(二)|武忠祥老师每日一题

(A)

  

通过观察tan x的图像可知,tan x 在 k\pi -\frac{\pi }{2}<x<\frac{\pi }{2}+k\pi的范围内是单调递增的。

但是f(x)的值我们不知道是不是在这个范围内,所以无法判断。A错。

(B)

我们要用到下列结论:

f(x)可导,且单调递增,可以推出f(x)的导数大于等于0,反之不行(因为f(x)的导数如果恒等于0他就不是单调递增的)。

所以f(x)的导数也可能是0,这里说大于0显然是错的。所以B错。

以列是扩展结论。

f(x)的导数大于0,可以推出f(x)单调递增。

(C)和(D)考察变上限定积分求导

(C)

分子小于0,分母大于0,那导数小于0;

(D)

分子小于0,分母大于0,乘一个小于0的数,那导数还是大于0;

这里e^(-x)从图像来看不能等于0;

知识点总结

1.tan x的图像

tan x 在 k\pi -\frac{\pi }{2}<x<\frac{\pi }{2}+k\pi的范围内是单调递增的.

2.

f(x)可导,且单调递增,可以推出f(x)的导数大于等于0,反之不行(因为f(x)的导数如果恒等于0他就不是单调递增的)。

f(x)的导数大于0,可以推出f(x)单调递增。

3.e^(-x)的图像

4.变上限定积分求导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gabriel Drop Out

饿饿!饭饭!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值