第197题|奇偶性的四则运算,你掌握了吗?|函数强化训练(四)|武忠祥老师每日一题 5月22日

解题思路:这道题如果我们会21号的题的话,简直是小菜一碟!主要就是要用到下面这个结论:

(A)

直接看奇偶性我们不好看,我们需要拆项:

\int_{0}^{x}(x-t^{2})f(t)dt=x\int_{0}^{x}f(t)dt-\int_{0}^{x}t^{2}f(t)dt

我们先看前一项x\int_{0}^{x}f(t)dt的奇偶性,x是奇函数,看上面结论\int_{0}^{x}f(t)dt是奇函数。奇函数乘奇函数是偶函数

我们再来看后一项\int_{0}^{x}t^{2}f(t)dt的奇偶性,t^{2}是偶函数,f(t)是偶函数,偶函数乘一个偶函数还是偶函数,那么t^{2}f(t)是偶函数,根据结论:\int_{0}^{x}t^{2}f(t)dt是奇函数。

偶函数减一个奇函数是非奇非偶函数,所以A不对。

(B)

这里是f(x-t)没有f(x)的形式,所以我们要想代换一下,即:令x-t=u,则原式等于:\int_{0}^{x}f(u)du,

一眼看出是奇函数,所以B也不对。

(C)

\int_{0}^{x}(x-2t)f(t)dt=x\int_{0}^{x}f(t)dt-\int_{0}^{x}2tf(t)dt

前一项x\int_{0}^{x}f(t)dt,奇函数乘奇函数是偶函数。

后一项\int_{0}^{x}2tf(t)dt,2tf(t)奇函数乘偶函数所以是奇函数,根据结论:\int_{0}^{x}2tf(t)dt是偶函数。

偶函数减偶函数是偶函数,C对

(D)

(D)选项和(C)选项很相似。

\int_{a}^{x}(x-2t)f(t)dt=x\int_{a}^{x}f(t)dt-\int_{a}^{x}2tf(t)dt

前一项x\int_{a}^{x}f(t)dt\int_{a}^{x}f(t)dt因为积分的下标是a不是0,关于它的奇偶性没有这个结论,所以不确定它的奇偶性。D错.

后一项\int_{a}^{x}2tf(t)dt,2tf(t)奇函数乘偶函数所以是奇函数,根据结论:\int_{a}^{x}2tf(t)dt是偶函数。

知识点总结:

1.奇偶性的四则运算:

奇函数乘奇函数是偶函数。

函数乘一个偶函数还是偶函数。

偶函数减一个奇函数是非奇非偶函数。

奇函数乘偶函数是奇函数。

2.遇到f(x-t)这种类型的,可以代换一下:令x-t=u

### 回答1: 66023年pdf是指具有660道数学集,由老师编写的,涵盖了23年的目。这份pdf集是供学生们进行数学学习和练习使用的资料。 老师以其数学教育经验和教学成果而闻名。他对于目设计和解技巧有着独到的见解,能够帮助学生们提高数学思维能力和解能力。他编写的集通常涵盖了各个年级和难度的目,能够适应不同层次的学生需求。 23年的目涵盖了相当长的时间跨度,这意味着学生们可以从中得到丰富的练习机会。通过不断地解决各种类型的目,学生们可以不断巩固已学知识,提高应用能力,并且掌握解技巧。这有助于学生们更好地应对考试,并在学业上有更好的表现。 这份集以pdf格式发布,这就意味着学生们可以在电子设备上方便地使用和存储这些目。学生们可以自主决定选择哪些目进行练习,根据自己的需求和进度进行学习。同时,他们也可以通过随时查找和参考集中的解答,深入理解每个目的解思路。 总之,66023年pdf是一份宝贵的数学学习资源。对于想要提高数学水平的学生来说,这是一个很好的学习和练习资料,可以帮助他们在数学领域取得更好的成绩。 ### 回答2: 66023年PDF是指老师在23年间所编写的660道目的PDF文件。老师是一位数学教育界的知名人士,以其丰富的教学经验和高质量的教材而受到广大学生和家长的赞誉。 这份PDF文件包含了660道目,主要涵盖了数学的各个方面,如代数、几何、概率与统计等。这些目旨在帮助学生巩固和提高数学知识,培养其分析问和解决问的能力。老师目设计独特,既有简单直观的目,也有复杂有深度的目,能够满足不同层次学生的需求。 使用这份PDF文件可以帮助学生系统地学习和掌握数学知识,考察自己的学习成果。每道目都有详细的解析和答案,学生可以通过对比自己的解答与标准答案来评估自己的学习情况,并找出自己的不足之处,进一步提高。 66023年PDF不仅是一份优秀的学习资料,也是一份宝贵的备考资料。对于即将参加数学考试的学生来说,这份PDF文件可以帮助他们熟悉考试型和难度,并提前进行针对性的复习,以取得更好的考试成绩。 总之,66023年PDF是一份具有很高教育价值的学习资料,对学生们的学习和备考都非常有帮助。相信通过认真使用这份资料,学生们的数学水平将会有显著的提高。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gabriel Drop Out

饿饿!饭饭!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值