第197题|奇偶性的四则运算,你掌握了吗?|函数强化训练(四)|武忠祥老师每日一题 5月22日

解题思路:这道题如果我们会21号的题的话,简直是小菜一碟!主要就是要用到下面这个结论:

(A)

直接看奇偶性我们不好看,我们需要拆项:

\int_{0}^{x}(x-t^{2})f(t)dt=x\int_{0}^{x}f(t)dt-\int_{0}^{x}t^{2}f(t)dt

我们先看前一项x\int_{0}^{x}f(t)dt的奇偶性,x是奇函数,看上面结论\int_{0}^{x}f(t)dt是奇函数。奇函数乘奇函数是偶函数

我们再来看后一项\int_{0}^{x}t^{2}f(t)dt的奇偶性,t^{2}是偶函数,f(t)是偶函数,偶函数乘一个偶函数还是偶函数,那么t^{2}f(t)是偶函数,根据结论:\int_{0}^{x}t^{2}f(t)dt是奇函数。

偶函数减一个奇函数是非奇非偶函数,所以A不对。

(B)

这里是f(x-t)没有f(x)的形式,所以我们要想代换一下,即:令x-t=u,则原式等于:\int_{0}^{x}f(u)du,

一眼看出是奇函数,所以B也不对。

(C)

\int_{0}^{x}(x-2t)f(t)dt=x\int_{0}^{x}f(t)dt-\int_{0}^{x}2tf(t)dt

前一项x\int_{0}^{x}f(t)dt,奇函数乘奇函数是偶函数。

后一项\int_{0}^{x}2tf(t)dt,2tf(t)奇函数乘偶函数所以是奇函数,根据结论:\int_{0}^{x}2tf(t)dt是偶函数。

偶函数减偶函数是偶函数,C对

(D)

(D)选项和(C)选项很相似。

\int_{a}^{x}(x-2t)f(t)dt=x\int_{a}^{x}f(t)dt-\int_{a}^{x}2tf(t)dt

前一项x\int_{a}^{x}f(t)dt\int_{a}^{x}f(t)dt因为积分的下标是a不是0,关于它的奇偶性没有这个结论,所以不确定它的奇偶性。D错.

后一项\int_{a}^{x}2tf(t)dt,2tf(t)奇函数乘偶函数所以是奇函数,根据结论:\int_{a}^{x}2tf(t)dt是偶函数。

知识点总结:

1.奇偶性的四则运算:

奇函数乘奇函数是偶函数。

函数乘一个偶函数还是偶函数。

偶函数减一个奇函数是非奇非偶函数。

奇函数乘偶函数是奇函数。

2.遇到f(x-t)这种类型的,可以代换一下:令x-t=u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gabriel Drop Out

饿饿!饭饭!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值