第309题|证明函数单调有界的核心思路 |武忠祥老师每日一题

解题思路:两个极限存在准则:1.夹闭。 2.单调有界。

这里题目告诉了我们f(x)的导数,如果我们判断出了 导数的正负,就能得出f(x)的单调性。

显然是大于0的,看后半部分:是否大于0,这里直接比较的大小即可;

这里要用到这样一个不等式:,显然是大于的,大于0;f(x)单调递增

接着证明f(x)有界,如何通过f'(x)来估f(x)呢,常用的是拉格朗日中值定理,f'(ξ)=(f(b)-f(a))/(b-a),

显然这么做比较困难,还有另外一种联系f(x)和f'(x)的方式就是:牛顿莱布尼茨公式:

,直接把f'(x)带入进去。

如图所示,经过四次放大:
第一次放大:<1,\frac{1}{1+f2(x)}<1,直接忽略不计。
第二次放大:\frac{1}{1+x}=\frac{\frac{1}{x}}{1+\frac{1}{x}}<ln (1+\frac{1}{x})

得到

这里可以看作是原函数为f(x)=\frac{1}{\sqrt{x}},利用拉格朗日中值定理,\sqrt{\frac{1}{t}}-\sqrt{\frac{1}{1+t}}=f(t)-f(1+t)=f'(\xi )(t-1-t)=-f'(\xi )=\int_{1}^{x}\frac{1}{2\sqrt{\xi ^{3}}}dt

第三次放大:

因为中值\xi是在t和t+1之间的值,所以可以再次进行放大:\int_{1}^{x}\frac{1}{2\sqrt{\xi ^{3}}}dt<\int_{1}^{x}\frac{1}{2\sqrt{t ^{3}}}dt,

第四次放大:

显然 \int_{1}^{x}\frac{1}{2\sqrt{t ^{3}}}dt<\int_{1}^{+\infty }\frac{1}{2\sqrt{t ^{3}}}dt,这是一个无穷级数的反常积分,也就是p积分,p=3/2>1是收敛的。

f(x)-f(1)不超过这个值,f(1)存在是一个有限的数,单调且有界,极限存在。

知识点:

1.两个极限存在准则:1.夹闭。 2.单调有界。

2.不等式:

3.联系f'(x)和f(x)的两个公式:

拉格朗日中值定理,f'(ξ)=(f(b)-f(a))/(b-a)

牛顿莱布尼茨公式:,

4.无穷级数的反常积分(p积分):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gabriel Drop Out

饿饿!饭饭!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值