二、平衡热力学
L1 统计热力学
目录
1. 系统熵与理想混合
-
晶格气体(Lattice gas):
-
我们考虑由 N 个不可区分的有限尺寸粒子(Ns-N 个不可区分的孔)组成的“晶格气体”,其限制在 Ns 个可用固定晶格位点的晶格中。
-
图 1. 带有颗粒(黑色)和孔(白色)的晶格位点 -
熵的定义(由Ludwig Eduard Boltzmann提出):
S = k B ln Ω S = k_B \ln \Omega S=kBlnΩ
其中, k B k_B kB是Boltzmann常数, Ω \Omega Ω是系统可区分(简并)状态的数量。
- 假设系统为粒子和空穴的“理想溶液”或“理想混合”。
- Ω = ( N s N ) = N s ! N ! ( N s − N ) ! \Omega=\left(\begin{array}{c}N_s\\N\end{array}\right)=\frac{N_s!}{N!(N_s-N)!} Ω=(NsN)=N!(Ns−N)!Ns!
-
在热力学极限下,当粒子数 N N N和可用晶格位点数 N s − N N_s - N Ns−N都趋于无穷大,并保持填充分数 x = N N s x = \frac{N}{N_s} x=NsN恒定时,使用Stirling公式:
ln ( N ! ) ≈ N ln ( N ) − N \ln(N!) \approx N \ln(N) - N ln(N!)≈Nln(N)−N
-
则每个晶格位点的熵密度 s = S N s s=\frac{S}{N_{s}} s=NsS【在热力学极限下】为:
s ( x ) = − k B [ x ln ( x ) + ( 1 − x ) ln ( 1 − x ) ] s(x) = -k_B [ x \ln(x) + (1 - x) \ln(1 - x) ] s(x)=−kB[xln(x)+(1−x)ln(1−x)]
其中, x x x为填充分数。
- 更一般地说,对于 M 个成分/品种 (i=1, 2,…, M) 和孔组成的“理想溶液”
s = − k B ∑ i = 0 M x i ln x i s=-k_B\sum_{i=0}^Mx_i\ln x_i s=−kBi=0∑Mxilnxi
其中: x 0 = 1 − ∑ i = 1 M x i x_0=1-\sum_{i=1}^Mx_i x0=1−∑i=1Mxi
2. 电化学势
-
假设系统中有 N N N个带电荷量为 z e ze ze的粒子,受到一个平均电势 ϕ \phi ϕ。
-
系统的Gibbs自由能为:
G = H − T S + z e N ϕ G = H - TS + z e N \phi G=H−TS+zeNϕ
在常温( T T T)、常压( P P P)以及常电势( ϕ \phi ϕ)下,Gibbs自由能的变化可表示为:
Δ G = Δ H − T Δ S + Δ ( z e N ) ϕ \Delta G=\Delta H-T\Delta S+\Delta(zeN)\phi ΔG=ΔH−TΔS+Δ(zeN)ϕ -
每个粒子的电化学势定义为每个粒子引起的 Gibbs 自由能的变化:
μ = ( Δ G Δ N ) T , P , ϕ = ( ∂ g ∂ x ) T , P , ϕ \mu=\left(\frac{\Delta G}{\Delta N}\right)_{T,P,\phi}=\left(\frac{\partial g}{\partial x}\right)_{T,P,\phi} μ=(ΔNΔG)T,P,ϕ=(∂x∂g)T,P,ϕ
其中,
g
=
G
/
N
s
g = G/N_s
g=G/Ns为每个晶格位点的 Gibbs 自由能,
h
=
H
/
N
s
h = H/N_s
h=H/Ns为每个晶格位点的焓,则
g
=
h
−
T
s
+
ρ
ϕ
=
h
−
T
s
+
z
e
x
ϕ
g=h-Ts+\rho\phi=h-Ts+zex\phi
g=h−Ts+ρϕ=h−Ts+zexϕ
其中,
ρ
=
z
e
N
N
s
=
z
e
x
\rho=\frac{zeN}{N_{s}}=zex
ρ=NszeN=zex.
因此,
μ
=
(
∂
g
∂
x
)
T
,
P
,
ϕ
=
h
′
(
x
)
−
T
s
′
(
x
)
+
z
e
ϕ
\mu=\left(\frac{\partial g}{\partial x}\right)_{T,P,\phi}=h^{\prime}(x)-Ts^{\prime}(x)+ze\phi
μ=(∂x∂g)T,P,ϕ=h′(x)−Ts′(x)+zeϕ
对于晶格气体,
s
=
−
k
B
[
x
ln
x
+
(
1
−
x
)
ln
(
1
−
x
)
]
s=-k_{B}[ x\ln x+(1-x)\ln(1-x)]
s=−kB[xlnx+(1−x)ln(1−x)]
因此,
⋅
s
′
(
x
)
=
−
k
B
[
ln
x
+
1
−
ln
(
1
−
x
)
−
1
]
=
−
k
B
ln
(
x
1
−
x
)
\cdot s^{\prime}(x)=-k_{B}[\ln x+1-\ln(1-x)-1]=-k_{B}\ln\biggl(\frac{x}{1-x}\biggr)
⋅s′(x)=−kB[lnx+1−ln(1−x)−1]=−kBln(1−xx)
晶格气体的电化学势为
μ
(
x
)
=
h
′
(
x
)
+
k
B
T
ln
(
x
1
−
x
)
+
z
e
ϕ
\mu(x)=h'(x)+k_BT\ln\biggl(\frac{x}{1-x}\biggr)+ze\phi
μ(x)=h′(x)+kBTln(1−xx)+zeϕ
更一般地说,对于 M 个成分/种类 (i=1, 2,…, M) 和孔的“理想溶液”
μ
i
(
x
)
=
∂
h
∂
x
i
+
k
B
T
ln
(
x
i
x
0
)
+
z
i
e
ϕ
\mu_i(x)=\frac{\partial h}{\partial x_i}+k_BT\ln\Bigg(\frac{x_i}{x_0}\Bigg)+z_ie\phi
μi(x)=∂xi∂h+kBTln(x0xi)+zieϕ
其中,
x
0
=
1
−
∑
i
=
1
M
x
i
x_0=1-\sum_{i=1}^Mx_i
x0=1−∑i=1Mxi
3. 稀溶液与理想混合
- 在稀溶液极限下,对于理想混合( x i → 0 , x 0 → 1 x_{i}\to0, x_{0}\to1 xi→0,x0→1):
μ i ( x ) = ∂ h ∂ x i + k B T ln x i + z i e ϕ = ∂ h ∂ x i + μ i d i l u t e \mu_{i}(x)=\frac{\partial h}{\partial x_{i}}+k_{B}T\ln x_{i}+z_{i}e\phi=\frac{\partial h}{\partial x_{i}}+\mu_{i}^{dilute} μi(x)=∂xi∂h+kBTlnxi+zieϕ=∂xi∂h+μidilute
- 对于非理想混合:
μ i = μ i d i l u t e + μ i e x c e s s = ( k B T ln ( x i ) + z i e ϕ ) + k B T ln ( γ i ) = k B T ln ( f i c i ) + z i e ϕ \mu_{i}=\mu_{i}^{dilute}+\mu_{i}^{excess}=(k_{B}T\ln(x_{i})+z_{i}e\phi)+k_{B}T\ln(\gamma_{i})=k_{B}T\ln( f_{i}c_{i})+z_{i}e\phi μi=μidilute+μiexcess=(kBTln(xi)+zieϕ)+kBTln(γi)=kBTln(fici)+zieϕ
-
其中, f i f_i fi是活度系数。
-
在稀电解质中,非理想性主要来自于静电吸引,这些吸引作用使得自由能下降。
-
使用稀溶液理论可推导Debye-Huckel公式:
ln ( γ i ) = − Z i 2 A I 1 + B I \ln(\gamma_i)=-\frac{Z_i^2A\sqrt{I}}{1+B\sqrt{I}} ln(γi)=−1+BIZi2AI
其中, I = ∑ i Z i 2 X i I=\sum_iZ_i^2X_i I=∑iZi2Xi是无量纲的离子强度(盐浓度的量度)。过量化学势在低浓度时像离子强度的平方根一样减小,在高浓度时饱和。
-
补充:
- x i = # p a r t i c l e s i # s i t e s = N i N s = N i / V N s / V = C i ρ s C i = N i V = c o n c e n t r a t i o n ( M ) ρ s = N s V = S i t e D e n s i y a i = γ i x i = f i c i : A b s o l u t e a c t i v i t y \begin{aligned}&x_{i}=\frac{\# particles i}{\# sites}=\frac{N_{i}}{N_{s}}=\frac{N_{i}/V}{N_{s}/V}=\frac{C_{i}}{\rho_{s}}\\&C_{i}=\frac{N_{i}}{V}=concentration(M) \rho_{s}=\frac{N_{s}}{V}=SiteDensiy\\&a_{i}=\gamma_{i}x_{i}= f_{i}c_{i}:\mathrm{Absolute~activity}\end{aligned} xi=#sites#particlesi=NsNi=Ns/VNi/V=ρsCiCi=VNi=concentration(M)ρs=VNs=SiteDensiyai=γixi=fici:Absolute activity
- 过量化学势(Excess Chemical Potential) 是热力学中用于描述实际溶液或混合物相对于理想溶液的额外自由能的一种量度。它反映了系统中由于非理想行为而引入的额外化学势,是理解非理想溶液、混合物以及相互作用的一种非常重要的工具。
过量化学势可以定义为实际系统中某一组分的化学势相对于理想系统的化学势之间的差值:
μ e x = μ − μ i d e a l \mu^\mathrm{ex}=\mu-\mu^\mathrm{ideal} μex=μ−μideal
μ ex \mu^{\text{ex}} μex:过量化学势。
μ \mu μ:实际系统中的化学势。
μ ideal \mu^{\text{ideal}} μideal:理想系统中的化学势。
在理想溶液中,组分之间的相互作用被认为是完美的,不会有额外的排斥或吸引;而在实际溶液中,分子之间的相互作用(如范德华力、氢键、电荷之间的作用等)往往会偏离理想行为。这些相互作用引起了额外的自由能,这就是“过量”的来源。 - 活度系数(Activity Coefficient): 是用来描述溶液中组分偏离理想行为程度的一个量度。在化学和热力学中,理想溶液是指其行为符合拉乌尔定律或亨利定律的溶液,其中组分的相互作用完全一致。然而在实际溶液中,由于组分间的相互作用复杂,溶液往往表现出非理想行为。活度系数用于将这些非理想效应量化,以便更准确地描述组分的行为。
- 活度(Activity):在非理想溶液中,活度用于表征某种组分在溶液中的“有效浓度”,即在特定条件下它的有效反应能力。活度通常用符号 a i a_i ai 表示。
- 活度系数:活度系数用于将物质的真实行为和理想行为进行对比,用符号
γ
i
\gamma_i
γi 表示。通过活度系数可以将真实系统中的浓度(或分压)与活度联系起来:
a i = γ i c i a_i=\gamma_ic_i ai=γici
a i a_i ai:组分 i i i 的活度。
γ i \gamma_i γi:组分 i i i 的活度系数。
c i c_i ci:组分 i i i 的实际浓度。
对于理想溶液, γ i = 1 \gamma_i = 1 γi=1,这意味着在理想情况下,组分的活度等于其浓度。而在非理想情况下,活度系数可能大于或小于 1,表明实际效应要么增强( γ i > 1 \gamma_i > 1 γi>1),要么减弱( γ i < 1 \gamma_i < 1 γi<1)。 - 活度系数的物理意义
活度系数表征了溶液中组分之间的非理想性,主要来源于以下几个方面:
1)相互作用:组分之间的电荷作用、范德华力、氢键等都会影响组分的自由能,从而导致溶液偏离理想行为。
2)浓度影响:在较高浓度下,分子间的排斥力和吸引力增加,导致分子行为偏离理想状态。
3)离子效应:对于电解质溶液,溶质之间的离子相互作用使得离子的活动减少。例如,带相反电荷的离子之间的吸引可能导致离子的实际有效浓度下降。 - 活度系数的计算与理论
通常依赖于经验公式和理论模型(Debye-Huckel公式)。
4. 浓溶液
- 在高浓度下,活度系数的表达式变得更复杂,因为除了长程静电相互作用外,还有各种短程相互作用。
4.1 晶格气体模型
-
对于晶格气体:
γ i = 1 x 0 , w h e r e x 0 = 1 − ∑ i = 1 M x i = 1 − Φ \gamma_{i}=\frac{1}{x_{0}}, \mathrm{where} x_{0}=1-\sum_{i=1}^{M}x_{i}=1-\Phi γi=x01,wherex0=1−i=1∑Mxi=1−Φ
其中, ν \nu ν为总填充分数。此时,过化学势为:
μ i excess k B T = ln γ i = − ln ( 1 − Φ ) ∼ Φ as Φ → 0 \frac{\mu_i^{\text{excess}}}{k_BT}=\ln\gamma_i=-\ln(1-\Phi)\sim\Phi \text{as} \Phi\to0 kBTμiexcess=lnγi=−ln(1−Φ)∼ΦasΦ→0
过剩化学势在**近密堆积( Φ → 1 \Phi→1 Φ→1)时会发散(→∞),并在低体积分数( Φ → 0 \Phi→0 Φ→0)**下呈线性依赖(→0)。
4.2 硬球模型
-
硬球模型用于描述液体中短程排斥的模型:
- 过剩化学势可以用Carnahan-Starling方程近似,适用于体积分数最高为0.55的情况:
μ i e x c e s s k B T = ln γ i = Φ ( 8 − 9 Φ + 3 Φ 2 ) ( 1 − Φ ) 3 ∼ 8 Φ a s Φ → 0 \frac{\mu_{i}^{excess}}{k_{B}T}=\ln\gamma_{i}=\frac{\Phi(8-9\Phi+3\Phi^{2})}{\left(1-\Phi\right)^{3}}\sim8\Phi \mathrm{as} \Phi\to0 kBTμiexcess=lnγi=(1−Φ)3Φ(8−9Φ+3Φ2)∼8ΦasΦ→0
- 扩展至低体积分数的情况时,硬球的过剩化学势是晶格气体的8倍,这反映了几何上硬球排除的体积比晶格气体大8倍的事实。
- 在体积分数大于0.55时,CS近似开始失效。
图 2. 过量化学势(无量纲)与堆积分数的函数关系 [1]
5. Stirling公式的推导
-
Stirling公式的系统推导从以下积分开始:
N ! ≈ 2 π N ( N e ) N N! \approx \sqrt{2 \pi N} \left( \frac{N}{e} \right)^N N!≈2πN(eN)N
当 N N N很大时,可以得到:
ln ( N ! ) ≈ N ln ( N ) − N \ln(N!) \approx N \ln(N) - N ln(N!)≈Nln(N)−N
例如,当 N = N A = 6 × 1 0 23 N = N_A = 6 \times 10^{23} N=NA=6×1023(Avogadro常数)时, ln ( N ) = 55 \ln(N) = 55 ln(N)=55。
6. 总结
- 本文档详细分析了统计热力学中不同类型的系统,包括晶格气体、稀溶液与浓溶液的性质和相应的电化学势。
- 公式部分详细说明了系统的熵、电化学势、稀溶液和浓溶液的特性,以及Stirling公式的推导。理解这些公式对于掌握统计热力学的基础概念和应用至关重要。
总结要点
- 系统熵与理想混合:熵的定义和理想混合模型,使用Stirling公式计算熵。
- 电化学势:Gibbs自由能和电化学势的计算,分析了粒子在系统中的自由能变化。
- 稀溶液与理想混合:通过稀溶液理论推导电化学势,使用Debye-Huckel公式描述静电吸引的影响。
- 浓溶液:包括晶格气体模型和硬球模型,描述了高浓度下的过剩化学势行为。
- Stirling公式推导:Stirling公式的推导过程,用于近似大数阶乘的自然对数。