- 博客(11)
- 问答 (1)
- 收藏
- 关注
原创 简谈GA(遗传算法)
遗传算法(Genetic Algorithm, GA)是一种搜索算法,它模仿自然选择和遗传学原理来解决优化问题。GA算法的是通过优化。
2024-09-22 12:00:00 936
原创 群体智能与边缘智能计算
群体智能计算更多地强调模仿自然界的群体行为,通过多个个体的简单规则和相互作用来形成整体的智能。边缘智能计算则关注于将AI计算放置在靠近数据源的边缘设备上,以提高计算效率、降低延迟,主要用于实时性要求较高的应用场景。两者都体现了分布式计算的优势,但它们服务于不同的应用需求和技术领域。
2024-09-14 12:00:00 356
原创 群体智能计算与边缘智能计算
群体智能计算(Swarm Intelligence Computing)是一种基于多个个体(通常是简单的个体)协同合作,通过相互之间的交互和信息交换,实现复杂任务解决的计算技术。它模仿自然界中群体行为的原理,如昆虫、鸟类、鱼群等,通过个体间的局部交互,形成全局的智能表现。:因为数据在边缘设备上直接处理,避免了将大量数据上传到云端的过程,从而减少了处理延迟,适合对实时性要求高的场景,如自动驾驶、工业控制等。边缘智能计算通过减少云端的负荷,增强设备的独立计算能力,为物联网、大数据和AI应用提供了新的技术支持。
2024-09-13 16:00:00 1085
原创 内存碎片小结
内部碎片发生在分配的内存块内部。当内存分配给进程时,分配的内存块可能会比实际需要的内存稍大,导致多余的内存空间无法被利用。外部碎片是指由于内存中空闲块不连续,导致大块内存请求无法满足,尽管总的空闲内存量可能足够。内存碎片是内存管理中的一个常见问题,影响系统的效率和性能。内部碎片与外部碎片的管理和优化是内存管理系统设计中的一个关键方面。通过选择合适的内存管理策略,可以有效地减少碎片的产生,提高内存利用率。
2024-08-03 19:23:41 411
原创 局部性原理
局部性原理是提高计算机系统性能的关键。通过理解和利用时间局部性和空间局部性,设计更高效的缓存、页面调度算法和预取策略,可以显著提升计算机系统的响应速度和效率。在现代计算机架构中,局部性原理被广泛应用于硬件设计、操作系统和应用软件的优化中。
2024-07-02 20:20:46 315
原创 在ISIC2016上实现DeepLabv3+
利用Pytorch的deeplabv3_resnet101模型挑战ISIC2016数据集的图像分割
2024-07-01 21:50:20 1823
原创 DuelingDQN实现三维路径规划
以悬崖困境为基础,构建三维网格地图环境,以agent(自主式水下潜器Autonomous Underwater Vehicle,简称AUV)为运动物。AUV的动作空间自行设置(离散运动空间、连续运动空间均可),动作空间维度自行设定,但不得小于4维(上下前后左右)。请结合运动时间、运动成本、安全风险等实际因素进行考量,设计合理的奖励函数。完成下面问题:障碍物固定,出发、目的地固定,使用DRL方法训练agent到达目的地目录1、准备工作——环境设计3.1运动环境的设计3.1.1主要组件3.1.2环境操作3.1.
2024-06-30 22:56:23 1872
原创 train_loss和val_loss关系分析
分析train loss和val loss的关系可以帮助我们判断模型是否训练良好、是否存在过拟合或欠拟合,并采取相应措施来改进模型的性能。通过仔细观察损失曲线的变化趋势,可以指导我们调整模型参数、优化训练过程,从而提高模型的泛化能力和整体性能。
2024-06-29 16:53:05 1804
原创 0-1背包问题小结
输入:背包容量10、物品数量5、每件物品价值6, 3, 5, 4, 6和重量2, 2, 6, 5, 4。问:将哪些物品装入背包可使 这些物品的重量总和不超过背包容量,且价值总和最大?【输入形式】在屏幕上输入背包容量、物品数量、每件物品价值和重量。输出:最优解时选择物品的价值总和为15,编号为1,2,5。【输出形式】最优解时所选物品的价值总和及其编号。0-1背包问题的子问题的最优值为m[i, j],可选 择物品为i, i+1, …①在选择装入背包的物品时,对每种物品。装入背包多次,也不能只装入部分的物品i。
2023-11-27 20:02:37 333
原创 基于感知器算法的蠓虫分类问题
感知器是一种线性分类器,主要用于二分类问题也可以应用于多分类问题。本实验的目的在于加深学生对线性分类器的理解,掌握感知器算法的原理和实现过程,并用于实际的数据分类,体会其在模式识别中的作用。),然后使用阶跃函数(1 if summation > 0 else 0)作为激活函数,返回二进制分类结果。在每个 epoch 中,对于每个训练样本,通过调用。方法获取模型的预测值,然后根据真实标签进行权重和偏置的更新。: 一个二维数组,每行表示一个训练样本,每列表示一个特征;),通过计算输入与权重的点积(
2023-11-15 16:52:12 193
空空如也
i += ~i&-~i 是什么意思,具体是怎么作用的
2022-04-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人