题目链接:295. 数据流的中位数 - 力扣(LeetCode)
不停插入元素要求找到每个状态的中位数,用两个堆,把中位数左边的数记为left,右边的数记为right,一个大顶堆记录小于等于中位数的left,一个小顶堆记录大于中位数的right,数组长度为奇数时大顶堆比小顶堆多一个中位数,数组长度为偶数时,中位数就是两个堆顶的平均值
插入元素时,如果两个堆长度一样,先入小顶堆,这样小顶堆堆顶就是right里面最小的,弹出来放到left里面,此时left比right多一个数,并且left堆顶就是中位数,因为它比right都小,比left都大
如果left堆比right堆多一个数,那么先入left,那么left堆顶是left里面最大的数,弹出来送到right里面去,这样left和right数目相同,并且left堆顶元素小于right,right堆顶元素大于left,两个平均值就是中位数
注意优先队列默认是大顶堆
class MedianFinder {
public:
priority_queue<int> left;
priority_queue<int, vector<int>, greater<int> > right;
MedianFinder() {
}
void addNum(int num) {
if (left.size() == right.size()) {
right.push(num);
left.push(right.top());
right.pop();
} else {
left.push(num);
right.push(left.top());
left.pop();
}
}
double findMedian() {
return left.size() == right.size() ? (left.top() + right.top()) / 2.0 : left.top();
}
};