逻辑回归-分类问题---使用PyTorch的API实现

独热编码:

逻辑回归的类别我们使用独热编码,独热编码是一个向量,有几个类别该向量就有多长,我们将类别对应的分量设置为1,其他所有分量设置为0。

激活函数:softmax

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!

假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是

交叉熵损失函数:

在分类问题中,我们使用的是交叉熵损失函数,而不是均方误差,均方误差是用来计算连续值的损失函数,理由如下:

对比交叉熵和均方误差损失,可以发现,两者均在y^=y=1时取得最小值0,但在实践中y^py^p只会趋近于1而不是恰好等于1,在y^p<1的情况下,

  • 交叉熵只与label类别有关,y^py^p越趋近于1越好
  • 均方误差不仅与y^py^p有关,还与其他项有关,它希望y^1,…,y^p−1,y^p+1,…,y^Ky^1,…,y^p−1,y^p+1,…,y^K越平均越好,即在1−y^pK−11−y^pK−1时取得最小值

分类问题中,对于类别之间的相关性,我们缺乏先验。

在这个前提下,均方误差损失可能会给出错误的指示,比如猫、老虎、狗的3分类问题,label为[1,0,0],在均方误差看来,预测为[0.8,0.1,0.1]要比[0.8,0.15,0.05]要好,即认为平均总比有倾向性要好,但这有悖我们的常识

对交叉熵损失,既然类别间复杂的相似度矩阵是难以量化的,索性只能关注样本所属的类别,只要y^py^p越接近于1就好,这显示是更合理的。

import torch
from torch import nn
from d2l import torch as d2l


batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
# nn.Flatten()把数据变成二维的
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))

# 初始化参数
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights)

loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=0.1)

# 训练
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

直观理解为什么分类问题用交叉熵损失而不用均方误差损失? - shine-lee - 博客园

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值