独热编码(One-Hot Encoding)

【概念】

One-hot encoding是只存在一个1其余全为0的n位序列。也可以称它为二元向量,二元就是里面只有0和1.通常被用来描述一个状态机的某个状态。

【用处】

用于处理离散型特征。通过将离散特征通过one-hot编码映射到欧式空间,可以进一步计算特征之间的距离与相似度,然后在回归,分类,聚类等机器学习算法中使用。至于什么是离散型数据,欧式空间,特征距离和特征相似度,请同学自行学习,这里不做展开。

【应用】

在机器学习中,我们需要将用来训练的数据样本集合分类,转换成程序能够理解的向量。

比如我手里有三个图像样本,要识别出图片里的内容,其中包含三个维度,分别是
{
‘sex’:[“male”, “female”],
‘hair’:[‘short’,’long’,’bare’],
‘hair color’:[‘black’,’gold’,’blue’]
}

样本集合如下:

id sex hair hair color
1 male short black,gold
2 female long black,blue
3 male short gold
4 male bare black

注意:hair color这栏存在多个值的原因在于,这个人可能染了一部分头发。其他维度也同理,没准图片中有几个人,好多美女。

【代码】

下面是scikit-learn docs提供的代码示例:

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
# 这里有四个样本,三个维度
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])  
OneHotEncoder(categorical_features='all', dtype=<... 'numpy.float64'>,
       handle_unknown='error', n_values='auto', sparse=True)
#fit函数算了下3个维度各自的值个数,第一列是[0,1,0,1]只有两个值,第二列是[0,1,2,0]故有三个值,第三列同上。
>>> enc.n_values_
array([2, 3, 4])
# 待理解,大致是022+32+3+4
>>> enc.feature_indices_
array([0, 2, 5, 9])

#转换序列,0 -> [10],为啥0不是[0,1],这是函数分的,应该是有优化,不用在意。
#        1 -> [0,1,0]
#        1 -> [0,1,0,0]
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/counsellor/article/details/60145426
个人分类: 机器学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭