第1关:柱状图
任务描述
旅游选住的地方,地理位置往往是最重要的。那么在我们的数据中,房源地理位置分布有什么特点呢?下面我们来对地理位置数据进行可视化分析。
相关知识
为了完成本关任务,你需要掌握:1. 如何统计数据;2. 如何绘制柱状图。
地理位置分析
地理位置分析可以从两块入手:所属区域和位置经纬度
-
房源所属区域分析:房源按区域的数量分布;
-
房源位置经纬度:具体地理位置分布。
阿姆斯特丹区域划分:
房源所属片区
获取所属片区,从数据表中获取某一个属性,可以通过 dataframe 加个点号接属性来获取。统计房源所属片区,需要对每一行的区域进行计数,再按从大到小进行排序:
neighbourhood_count=df.neighbourhood.value_counts(ascending=False)#对neighbourhood列的字段进行统计并排序
因为片区较多,我们着重看房源量前 5 的片区:
neighbourhood_count.head(5)
房源所属区域
柱状图我们用 seaborn 的 countplot 函数就可以画出来了。通过大括号里面单引号放上属性,也能够获取数据表的相应属性。统计房源所属片区,需要对每一行的区域进行计数,再按从大到小进行排序。
排序的 order 变量需要字符串作为输入:
sns.set(style = 'whitegrid')#设置绘图样式
sns.countplot(x = 'neighbourhood',#绘制图形
data = df,
order = df['neighbourhood'].value_counts(ascending=False).head(5).index)
plt.xticks(rotation=90)#旋转x轴90度
下面是房源最多的 5 个片区的柱状图:
对比一下房源最多的 5 个片区的饼图:
柱状图对比饼图,柱状图更简洁、视觉对比更醒目,尤其是在元素多时!
编程要求
请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,读入数据并画出房源类型的柱状图。具体请按照以下要求可视化:
-
读入数据路径为:Task3/listings.csv;
-
图形的 figsize 为 (10, 10);
-
使用 plt.savefig 函数保存图形;
-
图形保存到 Task3/img/T1.png。
测试说明
平台会对你编写的代码进行测试:
图片预期输出结果为:
开始你的任务吧,祝你成功!
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
def student():
# ********* Begin *********#
df = pd.read_csv('Task3/listings.csv',index_col = 0)
fig = plt.figure(figsize=[10,10])
sns.countplot(x = 'room_type', data = df, order = df['room_type'].value_counts(ascending=False).head(5).index)
plt.xticks(rotation = 90)
plt.savefig('Task3/img/T1.png')
plt.show()
# ********* End *********#
第2关:散点图
任务描述
本关任务:使用 scatterplot 绘制房源位置经纬度的散点图。
相关知识
散点图:顾名思义就是把一个个点按照横纵坐标画在图中。
seaborn绘制散点图
散点图能够显示 2 个维度上 2 组数据的值,每个点代表一个观察点。
X (水平)和 Y (垂直)轴上的位置表示变量的值。研究这两个变量之间的关系是非常有用的。在 seaborn 中通过 scatterplot 制作散点图。
scatterplot() 参数说明:
-
x ,y :输入的绘图数据,必须是数值型数据;
-
hue :对输入数据进行分组的序列,使用不同颜色对各组的数据加以区分;
-
s :标记大小。
示例如下:
tips = pd.read_csv('tips.csv')
print(tips.head())
sns.relplot(x="total_bill",
y="tip",
data=tips)
编程要求
请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,使用seaborn 的 scatterplot 绘制房源位置经纬度的散点图,并设置标记大小为 10。
具体绘图,请按照以下要求可视化:
-
数据文件 Task4/listings.csv;
-
图形的 figsize 为 (10, 10);
-
文件名为 Task4/img/T1.png。
测试说明
平台会对你编写的代码进行测试:
图片预期输出结果:
开始你的任务吧,祝你成功!
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib
matplotlib.use("Agg")
def student():
# ********* Begin *********#
# 读入数据为DataFrame
df = pd.read_csv('Task4/listings.csv')
# 绘图:图像大小10×10,
plt.figure(figsize=(10, 10))
# 散点图
sns.scatterplot(x="longitude",
y="latitude",
s=10,
data=df)
# 保存并显示图像
plt.savefig("Task4/img/T1.png")
plt.show()
# ********* End *********#
第3关:直方图
任务描述
本关任务:绘制一个包含直方图与线形图的图形。
相关知识
为了完成本关任务,你需要掌握:1. 直方图和条形图的区别;2. 如何绘制直方图。
什么是直方图
单从外表上看直方图和条形图非常相似。首先需要区分清楚概念:直方图和条形图。
-
条形图用长条形表示每一个类别,长条形的长度表示类别的频数,宽度表示表示类别。
-
直方图是一种统计报告图,形式上也是一个个的长条形,但是直方图用长条形的面积表示频数,所以长条形的高度表示组距频数,宽度表示组距,其长度和宽度均有意义。当宽度相同时,一般就用长条形长度表示频数。
绘制直方图
直方图一般用来描述等距数据。直观上,直方图各个长条形是衔接在一起的,表示数据间的数学关系。
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import seaborn as sns
# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号
# 随机生成(10000,)服从正态分布的数据
data = np.random.randn(10000)
sns.distplot( data,kde=False,color="red")
# 显示横轴标签
plt.xlabel("区间")
# 显示纵轴标签
plt.ylabel("频数/频率")
# 显示图标题
plt.title("频数/频率分布直方图")
plt.show()
参数 | 作用 |
---|---|
data | 必选参数,绘图数据 |
bins | 直方图的长条形数目,可选项,默认为10 |
normed | 是否将得到的直方图向量归一化,可选项,默认为0,代表不归一化,显示频数。normed=1,表示归一化,显示频率。 |
facecolor | 长条形的颜色 |
edgecolor | 长条形边框的颜色 |
alpha | 透明度 |
编程要求
请仔细阅读右侧代码,结合相关知识,在Begin-End
区域内进行代码补充,根据输入数据将直方图与线形图绘制在同一面板中,具体绘图请按照以下要求可视化:
-
图形的
figsize
为(10, 10)
-
文件名为
Task5/img/T1.png
测试说明
平台会对你编写的代码进行测试:
图片预期输出结果:
开始你的任务吧,祝你成功!
import warnings
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
matplotlib.use("Agg")
warnings.filterwarnings('ignore')
def student(data, x, y):
'''
根据输入数据将直方图与线形图绘制在同一面板中
:param data: 绘制直方图数据,类型为list
:param x,y: 绘制线形图数据,类型为list
:return: None
'''
# ********* Begin *********#
# 绘图:图像大小10×10,
plt.figure(figsize=(10, 10))
# 直方图
sns.distplot(data, kde=False, color="blue")
# 折线图
sns.lineplot(x=x, y=y, color="orange")
# 保存并显示图像
plt.savefig("Task5/img/T1.png")
plt.show()
# ********* End *********#