头歌数据可视化练习

本文介绍了如何使用Python的seaborn库进行数据可视化,包括绘制房源区域分布的柱状图,展示房源位置的散点图,以及创建直方图与线形图的组合图表。主要涉及的数据文件有listings.csv,用于展示不同类型的房源分布和地理位置信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1关:柱状图

任务描述

旅游选住的地方,地理位置往往是最重要的。那么在我们的数据中,房源地理位置分布有什么特点呢?下面我们来对地理位置数据进行可视化分析。

相关知识

为了完成本关任务,你需要掌握:1. 如何统计数据;2. 如何绘制柱状图。

地理位置分析

地理位置分析可以从两块入手:所属区域和位置经纬度

  • 房源所属区域分析:房源按区域的数量分布;

  • 房源位置经纬度:具体地理位置分布。

阿姆斯特丹区域划分:


房源所属片区

获取所属片区,从数据表中获取某一个属性,可以通过 dataframe 加个点号接属性来获取。统计房源所属片区,需要对每一行的区域进行计数,再按从大到小进行排序:

 
  1. neighbourhood_count=df.neighbourhood.value_counts(ascending=False)#对neighbourhood列的字段进行统计并排序

因为片区较多,我们着重看房源量前 5 的片区:

 
  1. neighbourhood_count.head(5)

房源所属区域

柱状图我们用 seaborn 的 countplot 函数就可以画出来了。通过大括号里面单引号放上属性,也能够获取数据表的相应属性。统计房源所属片区,需要对每一行的区域进行计数,再按从大到小进行排序。

排序的 order 变量需要字符串作为输入:

 
  1. sns.set(style = 'whitegrid')#设置绘图样式
  2. sns.countplot(x = 'neighbourhood',#绘制图形
  3. data = df,
  4. order = df['neighbourhood'].value_counts(ascending=False).head(5).index)
  5. plt.xticks(rotation=90)#旋转x轴90度

下面是房源最多的 5 个片区的柱状图:

对比一下房源最多的 5 个片区的饼图:

柱状图对比饼图,柱状图更简洁、视觉对比更醒目,尤其是在元素多时!

编程要求

请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,读入数据并画出房源类型的柱状图。具体请按照以下要求可视化:

  • 读入数据路径为:Task3/listings.csv;

  • 图形的 figsize 为 (10, 10);

  • 使用 plt.savefig 函数保存图形;

  • 图形保存到 Task3/img/T1.png。

测试说明

平台会对你编写的代码进行测试:

图片预期输出结果为:


开始你的任务吧,祝你成功!

import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
def student():

    # ********* Begin *********#
    df = pd.read_csv('Task3/listings.csv',index_col = 0)
    fig = plt.figure(figsize=[10,10])
    sns.countplot(x = 'room_type', data = df, order = df['room_type'].value_counts(ascending=False).head(5).index)
    plt.xticks(rotation = 90)
    plt.savefig('Task3/img/T1.png')
    plt.show()

    # ********* End *********#

第2关:散点图

任务描述

本关任务:使用 scatterplot 绘制房源位置经纬度的散点图。

相关知识

散点图:顾名思义就是把一个个点按照横纵坐标画在图中。

seaborn绘制散点图

散点图能够显示 2 个维度上 2 组数据的值,每个点代表一个观察点。

X (水平)和 Y (垂直)轴上的位置表示变量的值。研究这两个变量之间的关系是非常有用的。在 seaborn 中通过 scatterplot 制作散点图。


scatterplot() 参数说明:

  • x ,y :输入的绘图数据,必须是数值型数据;

  • hue :对输入数据进行分组的序列,使用不同颜色对各组的数据加以区分;

  • s :标记大小。

示例如下:

 
  1. tips = pd.read_csv('tips.csv')
  2. print(tips.head())
  3. sns.relplot(x="total_bill",
  4. y="tip",
  5. data=tips)

编程要求

请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,使用seaborn 的 scatterplot 绘制房源位置经纬度的散点图,并设置标记大小为 10。

具体绘图,请按照以下要求可视化:

  • 数据文件 Task4/listings.csv;

  • 图形的 figsize 为 (10, 10);

  • 文件名为 Task4/img/T1.png。

测试说明

平台会对你编写的代码进行测试:

图片预期输出结果:


开始你的任务吧,祝你成功!

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib
matplotlib.use("Agg")


def student():

    # ********* Begin *********#
    # 读入数据为DataFrame
    df = pd.read_csv('Task4/listings.csv')
    # 绘图:图像大小10×10,
    plt.figure(figsize=(10, 10))
    # 散点图
    sns.scatterplot(x="longitude",
                    y="latitude",
                    s=10,
                    data=df)
    # 保存并显示图像
    plt.savefig("Task4/img/T1.png")
    plt.show()

    # ********* End *********#

第3关:直方图

任务描述

本关任务:绘制一个包含直方图与线形图的图形。

相关知识

为了完成本关任务,你需要掌握:1. 直方图和条形图的区别;2. 如何绘制直方图。

什么是直方图

单从外表上看直方图和条形图非常相似。首先需要区分清楚概念:直方图和条形图。

  • 条形图用长条形表示每一个类别,长条形的长度表示类别的频数,宽度表示表示类别。

  • 直方图是一种统计报告图,形式上也是一个个的长条形,但是直方图用长条形的面积表示频数,所以长条形的高度表示组距频数​,宽度表示组距,其长度和宽度均有意义。当宽度相同时,一般就用长条形长度表示频数。


绘制直方图

直方图一般用来描述等距数据。直观上,直方图各个长条形是衔接在一起的,表示数据间的数学关系。

 
  1. import matplotlib.pyplot as plt
  2. import numpy as np
  3. import matplotlib
  4. import seaborn as sns
  5. # 设置matplotlib正常显示中文和负号
  6. matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
  7. matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号
  8. # 随机生成(10000,)服从正态分布的数据
  9. data = np.random.randn(10000)
  10. sns.distplot( data,kde=False,color="red")
  11. # 显示横轴标签
  12. plt.xlabel("区间")
  13. # 显示纵轴标签
  14. plt.ylabel("频数/频率")
  15. # 显示图标题
  16. plt.title("频数/频率分布直方图")
  17. plt.show()

参数作用
data必选参数,绘图数据
bins直方图的长条形数目,可选项,默认为10
normed是否将得到的直方图向量归一化,可选项,默认为0,代表不归一化,显示频数。normed=1,表示归一化,显示频率。
facecolor长条形的颜色
edgecolor长条形边框的颜色
alpha透明度

编程要求

请仔细阅读右侧代码,结合相关知识,在Begin-End区域内进行代码补充,根据输入数据将直方图与线形图绘制在同一面板中,具体绘图请按照以下要求可视化:

  • 图形的figsize(10, 10)

  • 文件名为Task5/img/T1.png

测试说明

平台会对你编写的代码进行测试:

图片预期输出结果:


开始你的任务吧,祝你成功!

import warnings
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
matplotlib.use("Agg")
warnings.filterwarnings('ignore')


def student(data, x, y):
    '''
    根据输入数据将直方图与线形图绘制在同一面板中
    :param data: 绘制直方图数据,类型为list
    :param x,y: 绘制线形图数据,类型为list
    :return: None
    '''
    # ********* Begin *********#
    # 绘图:图像大小10×10,
    plt.figure(figsize=(10, 10))
    # 直方图
    sns.distplot(data, kde=False, color="blue")
    # 折线图
    sns.lineplot(x=x, y=y, color="orange")
    # 保存并显示图像
    plt.savefig("Task5/img/T1.png")
    plt.show()

    # ********* End *********#
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

eye了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值