梯度消失与梯度爆炸

今天学习到了梯度消失与梯度爆炸,特开此贴记录相关知识点。

一、梯度消失

        假设我们有四层神经网络,wi为权重,ai为神经元 。

        如果我们需要计算W1的梯度,就必须要按照链式法则从右往左求偏导。假设我们使用sigmoid函数作为激活函数,其导函数图像为:

        试想一下,根据链式求导法则,我们肯定是要将sigmoid的导数值与各权重值进行相乘,从而去求w1的梯度。就算每次取到sigmoid导函数的最大值1/4,始终是在使得w1的梯度往一个减小的方向进行下去的。比如例子中的四层神经网络,两次激活函数,每次都取最大值,都是1/16倍的x1*w2*w3,如果此时w2、w3、x1均是一个小于1的数,那么经过多次反向传播后,w1的梯度可能会越来越小。更别说sigmoid导数接近为0的时候了,此时梯度消失的速度只能更快。

        所以梯度消失可以理解为传入数据很大或者很小时,此时sigmoid函数值接近于0或1,梯度接近于0,就算反向传播时上一步传导过来的梯度很大,也会导致需要更新的权重和偏置值无法更新,甚至接近于0,直接导致这个神经元饱和。

        就算sigmoid函数值次次取最大值,但若此时权重和偏置值的初始值较小,权重和偏置值经过反向传播后更新只能变得越来越小,最后消失。

二、梯度消失的解决办法

        解决方法,使用Relu函数,就是将负数映射为0,正数取本身,这个函数的梯度要么为0,要么为1。当输入大于0时,梯度为1。好处就是:ReLU的梯度的连乘不会收敛到0,连乘的结果也只可以取两个值:0或1 。如果值为1,梯度保持值不变进行向后传播;如果值为0 ,梯度从该位置停止向后传播。

        当然,如果但输入的数据恒为负数时,则梯度也恒为0的时候,又会导致另外一个问题,神经元死亡。

        通常,激活函数的输入值为数据加上一个偏置值(bias),若bias太小,以至于输入激活函数的值为负数,那么在反向传播的过程中梯度恒为0。则神经元无法学习,直接导致该神经元死亡。

        为了解决这一问题,提出了Leaky ReLU函数,即在小于0的时候,仍然有微小的梯度。

三、梯度爆炸

        梯度误差是在神经网络训练期间计算的方向和梯度,神经网络以正确的方向和数值更新网络权重。但由于梯度的计算是存在误差的,梯度误差可能在更新过程中累积,造成非常大的梯度。这反过来会导致网络权重的大量更新,进而导致网络不稳定。在极端情况下,权重值可能变得太大,以至于溢出并导致NaN值现成梯度爆炸现象。

        当然,权重值初始值过大,有可能会导致梯度爆炸现象。

四、梯度爆炸解决方法(部分与梯度消失通用)

        解决这一问题我们可以采用梯度优化算法动态调整学习率,缩小batch size,使用权重正则化方法L1或L2,使用LSTM,减小神经网络层数。还有就是batch normalization,就是将数据输入隐层前将数据进行BN,从而使得数据更加符合正态分布,使得数据对于神经网络而言更有价值。

        

        

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值