1.1 创建 Web 版茴香豆账户和密码
登录 OpenXLab浦源 - 应用中心,可以看到 Web 版茴香豆的知识库注册页面,在对应处输入想要创建的知识库名称和密码,该名称就是 Web 版茴香豆的账户和密码,请牢记,以后对该知识助手进行维护和修改都要使用这个账户和密码。
1.2 创建 Web 版茴香豆知识库
完成账户创建或者输入已有账户密码后会进入相应知识库的开发页面,当前 Web 版茴香豆功能包括:
-
添加/删除文档
-
编辑正反例
-
打通微信和飞书群
-
开启网络搜索功能(需要填入自己的 Serper token,token 获取参考 3.1 开启网络搜索)
-
聊天测试
环境搭建
配置服务器
首先登录 InternStudio ,选择创建开发机:
搭建茴香豆虚拟环境
命令行中输入一下命令,创建茴香豆专用 conda 环境:
studio-conda -o internlm-base -t huixiangdou
创建成功,用下面的命令激活环境:
conda activate huixiangdou
环境激活成功后,命令行前的括号内会显示正在使用的环境,请确保所有茴香豆操作指令在 huixiangdou
环境下运行。
安装茴香豆
下面开始茴香豆本地标准版的安装。
下载茴香豆
先从茴香豆仓库拉取代码到服务器:
cd /root # 克隆代码仓库 git clone https://github.com/internlm/huixiangdou && cd huixiangdou git checkout 79fa810
拉取完成后进入茴香豆文件夹,开始安装。
安装茴香豆所需依赖
首先安装茴香豆所需依赖:
conda activate huixiangdou # parsing `word` format requirements apt update apt install python-dev libxml2-dev libxslt1-dev antiword unrtf poppler-utils pstotext tesseract-ocr flac ffmpeg lame libmad0 libsox-fmt-mp3 sox libjpeg-dev swig libpulse-dev # python requirements # python requirements修改 # BCEmbedding==0.15 -> 0.1.5 # transformers>=4.38 -> transformers==4.45.1 pip install BCEmbedding==0.1.5 cmake==3.30.2 lit==18.1.8 sentencepiece==0.2.0 protobuf==5.27.3 accelerate==0.33.0 pip install -r requirements.txt # python3.8 安装 faiss-gpu 而不是 faiss
2.2.3 下载模型文件
茴香豆默认会根据配置文件自动下载对应的模型文件,为了节省时间,本次教程所需的模型已经提前下载到服务器中,我们只需要为本次教程所需的模型建立软连接,然后在配置文件中设置相应路径就可以:
# 创建模型文件夹 cd /root && mkdir models # 复制BCE模型 ln -s /root/share/new_models/maidalun1020/bce-embedding-base_v1 /root/models/bce-embedding-base_v1 ln -s /root/share/new_models/maidalun1020/bce-reranker-base_v1 /root/models/bce-reranker-base_v1 # 复制大模型参数(下面的模型,根据作业进度和任务进行**选择一个**就行) ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b
完成后可以在相应目录下看到所需模型文件。
更改配置文件
茴香豆的所有功能开启和模型切换都可以通过 config.ini
文件进行修改,默认参数如下:
执行下面的命令更改配置文件,让茴香豆使用本地模型:
sed -i '9s#.*#embedding_model_path = "/root/models/bce-embedding-base_v1"#' /root/huixiangdou/config.ini
sed -i '15s#.*#reranker_model_path = "/root/models/bce-reranker-base_v1"#' /root/huixiangdou/config.ini
sed -i '43s#.*#local_llm_path = "/root/models/internlm2-chat-7b"#' /root/huixiangdou/config.ini
也可以用编辑器手动修改,文件位置为 /root/huixiangdou/config.ini
。
修改后的配置文件如下:
注意!配置文件默认的模型和下载好的模型相同。如果不修改地址为本地模型地址,茴香豆将自动从 huggingface hub 拉取模型。如果选择拉取模型的方式,需要提前在命令行中运行 huggingface-cli login 命令,验证 huggingface 权限。
知识库创建
修改完配置文件后,就可以进行知识库的搭建,本次教程选用的是茴香豆和 MMPose 的文档,利用茴香豆搭建一个茴香豆和 MMPose 的知识问答助手。
(改成中药材相关的文档)
conda activate huixiangdou cd /root/huixiangdou && mkdir repodir git clone https://github.com/internlm/huixiangdou --depth=1 repodir/huixiangdou git clone https://github.com/open-mmlab/mmpose --depth=1 repodir/mmpose # Save the features of repodir to workdir, and update the positive and negative example thresholds into `config.ini` mkdir workdir python3 -m huixiangdou.service.feature_store
在 huixiangdou 文件加下创建 repodir 文件夹,用来储存知识库原始文档。再创建一个文件夹 workdir 用来存放原始文档特征提取到的向量知识库。.
知识库创建成功后会有一系列小测试,检验问题拒答和响应效果,如图所示,关于“mmpose 安装”的问题,测试结果可以很好的反馈相应答案和对应的参考文件,但关于“std::vector 使用”的问题,因为属于 C++ 范畴,不再在知识库范围内,测试结果显示拒答,说明我们的知识助手工作正常。
和 Web 版一样,本地版也可以通过编辑正反例来调整茴香豆的拒答和响应,正例位于 /root/huixiangdou/resource/good_questions.json
文件夹中,反例位于/root/huixiangdou/resource/bad_questions.json
。
需要注意的是,每次更新原始知识文档和正反例,都需要重新运行 python3 -m huixiangdou.service.feature_store
命令进行向量知识库的重新创建和应答阈值的更新。
配置中可见,在运行过一次特征提取后,茴香豆的阈值从 -1.0 更新到了 0.33。 配置文件中的 work_dir
参数指定了特征提取后向量知识库存放的位置。如果有多个知识库快速切换的需求,可以通过更改该参数实现。
测试知识助手
命令行运行
运行下面的命令,可以用命令行对现有知识库问答助手进行测试:
conda activate huixiangdou cd /root/huixiangdou python3 -m huixiangdou.main --standalone
通过命令行的方式可以看到对话的结果以及中间的过程,便于我们确认知识库是否覆盖需求,正反例是否合理。
Gradio UI 界面测试
茴香豆也用 gradio
搭建了一个 Web UI 的测试界面,用来测试本地茴香豆助手的效果。
本节课程中,茴香豆助手搭建在远程服务器上,因此需要先建立本地和服务器之间的透传,透传默认的端口为 7860
,在本地机器命令行中运行如下命令:
ssh -CNg -L 7860:127.0.0.1:7860 root@ssh.intern-ai.org.cn -p 44519
在运行茴香豆助手的服务器端,输入下面的命令,启动茴香豆 Web UI:
conda activate huixiangdou cd /root/huixiangdou python3 -m huixiangdou.gradio
看到上图相同的结果,说明 Gradio
服务启动成功,在本地浏览器中输入 127.0.0.1:7860
打开茴香豆助手测试页面:
现在就可以用页面测试一下茴香豆的交互效果了。
自建数据库
在 huixiangdou 文件加下创建 repodir 文件夹,用来储存知识库原始文档。再创建一个文件夹 workdir 用来存放原始文档特征提取到的向量知识库。
反向数据:不变
正向数据,用ai生成,提示词
我想创建一个关于中药材识别、解释、功效等提供解决方案的知识库,现在需要获取一些和知识库相关的提问,请你模仿提问人询问相关话题的一些问题,便于与无关问题分隔开。
1. 我想知道人参的主要功效是什么?它适合所有人吗?
2. 最近我听说枸杞对眼睛有好处,但我不知道具体怎么使用。请问有什么推荐的用法吗?
3. 有哪些中药材可以帮助改善睡眠?我应该如何搭配使用?
4. 我在市场上看到一些价格差异很大的黄芪,如何判断黄芪的质量?
5. 对于经常感到疲劳的人来说,有哪些中药材可以调理身体?具体的使用方法是什么?
6. 我从小就听说桂枝有助于发汗,但我不太明白它的其他功效。能详细解释一下吗?
7. 如果我想用中药材来增强免疫力,应该选择哪些材料?有什么禁忌需要注意?
8. 我有些朋友推荐我使用丹参来改善血液循环,这样做安全吗?适合哪些人群?
9. 请问有什么中药材可以帮助缓解焦虑和压力?具体的用法和剂量是什么?
10. 我对中医不是很了解,但想尝试用中药材调理身体。请问有什么推荐的基础药材?