High-efficiency medical image encryption method based on2D Logistic-Gaussian hyperchaotic map【视频笔记】

文章提出了一种基于2DLogistic-Gaussian超混沌映射的医学图像加密方法,该方法具有良好的安全性和高效性。通过对比分析和性能测试,展示了2D-LGHM映射的优势,包括其超混沌范围、遍历性和不可预测性。加密方案包括像素排列和多向替换,能有效打破像素相关性,适用于不同医学图像的加密,能抵抗多种安全攻击。
摘要由CSDN通过智能技术生成

题目:基于二维logistic -高斯超混沌映射的高效医学图像加密方法

视频笔记【跟随张老师看论文】:2023-3-29 每周研究生SCI论文研讨_哔哩哔哩_bilibili

强烈推荐这位老师,真的是一位神仙导师!!!

发表的杂志:

        Applied Mathematics and Computation:JCR Q1 IF=4.397 中科院二区 审稿周期为4个月

题目解析:

High-efficiency medical image encryption method based on2D Logistic-Gaussian hyperchaotic map

  1. 标题中写高效的:在后续看时关注具体多快,本文算法的特征
  2. 医学图像:提供包装背景,使得论文有更多的使用价值
  3. 一般会将方法(method)改成算法(algorithm)

关键词部分:

        出现两个混沌词,有点重复

写作技巧:

        标题当作一个门面,关键词当作另一个展现门面,在关键词中不一定需要重新复现标题所出现的词,可以用其它词进行替换。目的可以增加论文被阅读和引用的概率

自己感悟:会感觉论文像一块精心雕琢的玉石,可以通过各种装饰去增加它被发现欣赏的可能性,需要自己站在读者的角度去看待、思考怎样可以更优化

摘要:(目的、方法、结果、结论)

        缺点:(1)缺少目的  (2)缺失技术细节描述,信息量少

本文设计了一种新的基于超混沌映射的医学图像加密方案,该方案具有良好的安全性和高效性,可应用于具有独特表现格式的医学图像。首先构造了一个具有较宽超混沌范围的二维logistic -高斯超混沌映射(2D-LGHM),性能测试指标表明该映射具有较好的遍历性和不可预测性。基于2DLGHM算法,建立了一种新的医学图像加密方案,该方案具有排列和多向像素替换过程。利用混沌序列有效地打破了相邻像素之间的相关性,完全改变了全局像素值。通过对多种医学图像的测试,结果表明该方案具有较高的鲁棒性和有效性,能够防御不同的安全攻击和数据丢失。

绿色部分写的重复(自己写作时候需要注意)

结果一般列举论文中的核心数据,比如标题中出现高效,可以放入一些速度值,可说明如何加密、如何置乱,如何扩散

引言:

第一段介绍医学背景,包装加入医学背景,可以增加文章本身的实用性

在页面下方,尽可能的留下邮箱,可以帮助提高学术影响力

计算机断层扫描(CT)、磁共振成像(MRI)、x射线和超声等医学成像技术在医学诊断中起着至关重要的作用,这引起了许多研究者对医学图像传输机密性的担忧。特别是随着医疗云服务、远程会诊、手术等新兴技术与互联网[2]相结合,未经授权访问患者信息将带来关键信息安全威胁。因此,防止病人的个人信息被泄露或篡改是目前非常重要的事情。

第二段:简述传统加密方法以及面临的挑战,引入混沌加密方案

传统的图像加密方法主要基于数据加密标准(DES)和高级加密标准(AES)。计算机运算能力的迅速提高使传统方法的安全性和效率面临着前所未有的挑战。为了提高图像密码学的安全性和实用价值,在[4]加密方案中引入了混沌理论、量子映射理论等新理论。混沌系统具有对初始条件高度敏感、长期不可预测的迭代轨迹等特性[5,6],这些特性在许多方面与密码学的要求相似[7,8],因此基于混沌理论的加密方案引起了广大研究者的兴趣。

第三段:背景介绍(研究现状)

Fridrich提出一种基于二维离散混沌映射[9]的排列扩散图像加密方法以来,[9]一直被认为是一种典型的图像加密结构。许多学者受到启发,先后提出了许多基于混沌的图像加密方法。近年来,一些新的基于混沌的图像加密方法被提出[10-12]。Hua等人提出了一种经典的基于二维logistic -正弦耦合映射的混沌结构图像加密算法,并从多方面综合分析了该算法的优越性[13]。Zou等人提出了一种改进的帐篷动态交叉耦合映射格,对不同长度DNA链上的像素交换和扩散具有更宽的混沌范围和更高的遍历性,实验结果表明该加密方案具有良好的安全性和效率[14]。Hu等人设计了基于混沌的伪随机数发生器(CBPRNG)来增强序列的随机性,并提出了多轮变换网络分别对输入图像的高比特和低比特进行加密[15]。对图像像素进行位操作还可以实现像素扩散和替换,可以有效抵御典型攻击[16-18]。Shafai等人结合DNA和混沌图[19],提出了一种安全有效的医学图像密码系统。Subhrajyoti等人利用Logistic帐篷映射来干扰医学图像,结果表明该加密算法对[20]加密和解密是有效的。[21]中提出的基于eπ-map和位反转的图像加密方案也具有良好的安全性和可靠性,并优于密码分析结果。Li等人提出了一种分数阶超混沌失谐激光系统,并结合它设计了一种新颖的高安全性图像加密方案,其中像素级和位级操作共同作用来打破像素相关性[22]。Gao等人设计了一种基于三维立方体构造方法和超混沌映射的多图像加密方案,不限制图像的数量和大小,实验仿真和性能测试证明了该方案的有效性和安全性[23]。Lai等人设计了一种新颖的像素分割图像加密方案,该方案增加了一个像素交换机制,可以在破坏像素位置的同时改变像素值[24]。

与此同时,面对日益增长的安全性要求,出现了各种攻击和噪声干扰方法来测试算法的机密性[25-27]。虽然加密算法的设计已经取得了一些进展,但随着密码破译技术的发展,一些算法仍然存在弱点[28,29],因此探索一种更安全、更高效的加密方案是值得的。

最后一段:

这篇文章将研究工作和文章的组织结构放在一起了,一般是将二者分开的

像英文sci论文中的组织结构可直接将大框架拿过来使用,替换一些关键词

本文创造性地提出了一种基于像素排列和扩散的简单高效密码结构的具有高质量随机性的二维logistic -高斯低混沌映射。本文组织结构如下:第2节描述了二维超混沌系统的一个新模型。第三节介绍了基于超混沌系统的加密方案。第四节对所提出的加密方案进行了仿真,并对算法的各项性能进行了分析。第五部分总结了本文的工作。

章节结构像目录索引,可以给读者更清晰的表达出整体文章的脉络

引言看完后还是不太清楚作者想用什么方法改进什么问题;它也没有像常规一样介绍自己做出哪些贡献,有点懵?

2、2D-LGHM模型

two-dimensional Logistic-Gaussian hyperchaotic map

介绍提出的2D-LGHM模型,且将三个2d混沌映射比较,来评估超混沌行为

2.1、2D-LGHM定义(相对于一些预备知识的介绍)

现有一维混沌映射存在控制参数少、混沌范围邮箱、输出序列随机性较弱

——>通过多个混沌映射组合进行解决

通过余弦变化引入2D-LGHM

logistic映射的理解:

参考链接:Logistic映射_z2bns的博客-CSDN博客

2.2. 2D-LGHM的性能评估

当混沌映射具有良好的混沌特性时,其吸引子通常表现出复杂的几何形状,在相空间中占据较大的区域。

表1列出了所提出的2D- lghm与现有三种二维混沌映射的对比,即二维无限坍缩映射(2D- icm)[30]、交叉二维超混沌映射[31]和二维三角映射(2D- tm)[32]。显然,2D-LGHM在相空间中占有非常大的面积,其分布非常分散。

李雅普诺夫指数(Lyapunov index, LE)可以判断动力系统是否混沌。LE值为正表明动力系统的两条轨迹在相平面上是可接近的,并且在每个时间单位内呈指数分离,因此它们将完全不同。一般来说,具有正LE的系统被认为是混沌的,而具有多个LE的系统被认为是超混沌的。超混沌是一种比普通混沌更为复杂的动力学行为。在实际应用中,超混沌系统更能满足机密通信、人工神经网络、非线性电路等方面的需要。因此,将一种超混沌性能更好的系统应用于图像加密就显得更加具有吸引力。

图3为上述图的两个le图。可以看到,2D-LGHM的最大LE接近200,比其他三种混沌图都要大得多。由于2D-LGHM的输出序列非常随机和不可预测,因此其优越的性能表明2D-LGHM更具竞争力。将导出序列应用到图像加密算法中,可以为算法的安全性提供更可靠的保证。综合考虑上述指标,我们提出的映射的细节优势可以总结为:首先,2D-LGHM的超混沌范围是连续的。在应用于加密时,可以避免由于控制参数的微小变化而陷入周期范围,从而导致动态中断,从而导致严重的安全问题。同样值得注意的是,2D-LGHM几乎没有周期范围。其次,2D-LGHM生成的超混沌序列具有优异的性能指标,其最大李雅普诺夫指数可达200,具有极大的随机性,在信息加密应用中具有巨大的优势。最后,2D-LGHM结构具有可扩展性因为它可以通过两个余弦函数组合两个现有的一维映射。将一维映射代入,可以得到一个全新的二维超混沌映射。

表1:提出的2D- lghm与现有二维混沌映射的比较。
图2所示:不同二维混沌映射的吸引子:(a) Henon映射;(b) 2 d-slmm;(c) 2 d-simm;(d) 2 d-lghm。

 

图3:不同二维混沌映射的Lyapunov指数:(a) Henon映射;(b) 2 d-slmm;(c) 2 d-simm;(d) 2 d-lghm。

画一些图的时候,可以采用一些三维的画法

画框架图时,尽量避免竖版文章,从而降低可读性(可整体竖着,字需要是横着的)

 3.基于2d - lghm的医学图像加密方案

本文提出了一种名为LG-IES的医学图像加密方案。LG-IES的整体结构如图4所示,其中密钥K包含2D-LGHM映射的初始状态值。分别根据初始状态生成用于置乱和扩散操作的超混沌矩阵S1和S2,对像素位置进行随机洗牌,改变像素值。该方案实现了安全性和效率的平衡,加解密过程仅由一轮置乱和两轮扩散组成,可以在相对有限的时间内将普通图像加密为完全无法识别的密码图像,具有较高的安全性。

图4:医学图像加密方案的结构。

 

像一些专业名词(算法、模型、框架)这些,需要全文统一

 

每个公式介绍完之后,where不适合分段或大写,有where的地方公式后应加标点符号

看一些论文的数据库引用时,可以积累下来,为自己写论文提供参考

讨论时间时需要介绍电脑配置

ps:第一次看图像加密(混沌领域的文章),实在是有点不太懂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值