M-net: A Convolutional Neural Network for deep brain structure segmentation

论文链接:M-net: A Convolutional Neural Network for deep brain structure segmentation | IEEE Conference Publication | IEEE Xplore

摘要:

M-net:端到端可训练卷积神经网络(CNN)架构

用途:从磁共振图像(MRI)中分割深度(人类)大脑结构

M-net操作的是3D数据,但它只使用了2D卷积>提高效率

实验指标是骰子系数


设计目的:

在输入级利用一个切片周围的3D信息,在第一个阶段之后只对2D信息进行操作,以产生一个标记的切片作为输出。这确保了标签在片间的一致性和准确性,而不使用任何后处理步骤,这在短期内减少了运行时和内存需求。


M-net框架:

 实心蓝色方框表示多通道特征图。蓝色框代表复制的特征图。通道的数量在方框的顶部表示

一个切片s和它的邻居组成一个堆栈s-n:s+n作为输入。n的值是由经验决定的。这使我们能够利用3D信息。切片堆栈通过一个3D -2D转换块传递,该转换块学习一个大小为7x7x(2n+1)的3D卷积滤波器,将2D切片堆栈组合成一个单独的2D切片s¯。然后通过M-net架构进行处理,以获得所需的分割。因此,整个卷的分割是一片一片地完成的。

        M-net主要有4条2D滤波器的路径:两条主要的编码和解码路径,以及两条侧路径,这两条侧路径赋予了我们的架构深度监督的功能。每个途径有4个步骤。

在编码路径中,每一步都有一个大小为3x3的2D卷积滤波器级联和2x2的maxpooling,这将输入的大小减少了一半,并允许网络学习上下文信息。在卷积滤波器的级联中,引入跳接,使网络能够更好地学习特征。解码层与编码层相同,但有一个例外:maxpooling被上采样层取代,将输入的大小增加一倍,并恢复原始大小的输出图像。

在相应的编码层和解码层之间也实现了跳跃式连接,以确保网络有足够的信息导出图像的细粒度标记,而不需要任何后处理。左操作s¯,有4个大小为2x2的maxpooling层,输出作为相应编码层的输入。右向上采样每个解码层的输出到s¯的原始大小。

解码层和右的输出由L个通道的1x1卷积层处理,其中L是包括背景在内的感兴趣结构的数量。在每一步和每一卷积层后分别使用Dropout(概率为0.3)和批归一化(BN)来减少过拟合。对于除最后一层之外的所有层,每个卷积层之后都应用一个ReLU激活。对于最后一层,应用softmax激活,给出每个体素属于不同结构的概率。

采用加权分类交叉熵函数来解决分类不平衡问题。这种损失函数和权重的定义是,当特定类中的体素更少时,权重就会增加。 M-net的优点是除一个3D卷积滤波器外,所有其他滤波器都是2D滤波器,这允许以相当低的内存需求(~ 5GB)对网络进行端到端训练。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制,可以提高模型的性能和效率。它通过对每个通道的特征图进行加权,使得网络可以更好地学习到重要的特征。ECA-Net的设计简单,易于实现,并且可以与各种深度卷积神经网络结构相结合使用。 ### 回答2: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制。 ECA-Net通过提出一种名为"Efficient Channel Attention"(ECA)的注意力机制,来增强深度卷积神经网络的性能。通道注意力是一种用于自适应调整不同通道的特征响应权重的机制,有助于网络更好地理解和利用输入数据的特征表示。 相比于以往的注意力机制,ECA-Net采用了一种高效且可扩展的方式来计算通道注意力。它不需要生成任何中间的注意力映射,而是通过利用自适应全局平均池化运算直接计算出通道注意力权重。这种方法极大地降低了计算和存储开销,使得ECA-Net在实际应用中更具实用性。 在进行通道注意力计算时,ECA-Net引入了两个重要的参数:G和K。其中,G表示每个通道注意力的计算要考虑的特征图的大小;K是用于精细控制计算量和模型性能之间平衡的超参数。 ECA-Net在各种视觉任务中的实验结果表明,在相同的模型结构和计算资源下,它能够显著提升网络的性能。ECA-Net对不同层级的特征表示都有显著的改进,能够更好地捕捉不同特征之间的关联和重要性。 总之,ECA-Net提供了一种高效并且可扩展的通道注意力机制,可以有效提升深度卷积神经网络的性能。它在计算和存储开销上的优势使得它成为一个非常有价值的工具,可在各种计算资源受限的应用中广泛应用。 ### 回答3: "eca-net: efficient channel attention for deep convolutional neural networks" 是一种用于深度卷积神经网络的高效通道注意力模块。这一模块旨在提高网络对不同通道(特征)之间的关联性的理解能力,以提升网络性能。 该方法通过引入了一个新的注意力机制来实现高效的通道注意力。传统的通道注意力机制通常是基于全局池化操作来计算通道之间的关联性,这种方法需要较高的计算成本。而ECA-Net则通过引入一个参数化的卷积核来计算通道之间的关联性,可以显著减少计算量。 具体来说,ECA-Net使用了一维自适应卷积(adaptive convolution)来计算通道注意力。自适应卷积核根据通道特征的统计信息来调整自身的权重,从而自适应地计算每个通道的注意力权重。这样就可以根据每个通道的信息贡献度来调整其权重,提高网络的泛化能力和性能。 ECA-Net在各种图像分类任务中进行了实验证明了其有效性。实验结果显示,ECA-Net在相同计算预算下,相比其他通道注意力方法,可以获得更高的分类精度。同时,ECA-Net还具有较少的额外计算成本和模型大小,使得其在实际应用中更加高效。 总结而言,"eca-net: efficient channel attention for deep convolutional neural networks" 提出了一种高效通道注意力方法,通过引入自适应卷积核来计算通道注意力,从而提高了深度卷积神经网络的性能。这一方法在实验中取得了良好的效果,并且具有较少的计算成本和模型大小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值