联邦大模型微调

微调(Fine-tuning)是一种迁移学习的技术,用于在一个已经预训练好的模型基础上,通过进一步训练来适应特定的任务或数据集。微调可以在具有相似特征的任务之间共享知识,从而加快训练速度并提高模型性能。

微调步骤:

  1. 选择预训练模型:选择一个在大规模数据集上预训练好的模型,如ImageNet上的预训练的卷积神经网络(如ResNet、VGG等)。这些模型通常具有良好的特征提取能力。
  2. 冻结底层权重:将预训练模型的底层权重(通常是卷积层)固定住,不进行训练。这是因为底层权重通常学习到了通用的特征,可以被用于许多不同的任务。
  3. 替换顶层分类器:将预训练模型的顶层分类器(通常是全连接层)替换为适合特定任务的新的分类器。新的分类器的输出节点数量应该与任务的类别数相匹配。
  4. 解冻部分权重(可选):根据任务的复杂性和可用的训练数据量,可以选择解冻一些底层权重,以便更好地适应新的任务。这样可以允许底层权重进行微小的调整,以更好地适应新任务的特征。
  5. 进行训练:使用特定任务的训练数据集对新的分类器进行训练。可以使用较小的学习率进行训练,以避免对预训练模型的权重进行过大的更新。
  6. 评估和调整:在训练完成后,使用验证集或测试集评估模型的性能。根据评估结果,可以进行调整,如调整学习率、调整模型结构等。

PEFT:

PEFT(Performance Estimation and Modeling for Fine-Tuning)是一种用于微调任务的性能估计和建模方法。它的主要目的是帮助研究人员和从业者在微调过程中更好地理解和预测模型的性能,并进行更有效的模型选择和调优。

使用场景:

  1. 模型选择:在微调之前,通常需要选择一个合适的预训练模型。PEFT可以帮助评估和比较不同预训练模型在特定任务上的性能,从而选择最适合的模型。
  2. 超参数调优:微调过程中可能涉及到一些超参数的选择,如学习率、批量大小等。PEFT可以帮助预估不同超参数设置下模型的性能,并指导超参数的调优。
  3. 计算资源规划:微调通常需要大量的计算资源,如显存、GPU时间等。PEFT可以帮助估计不同模型和数据集规模下的计算资源需求,以便更好地规划和分配资源。
  4. 模型压缩和加速:在一些场景下,需要将模型压缩或加速,以便在资源受限的设备上进行推理。PEFT可以帮助评估不同压缩和加速技术对模型性能的影响,并指导模型优化的方向。

PEFT的关键步骤:

  1. 数据采样:从原始数据集中采样一小部分数据用于性能估计。这样可以减少计算开销,同时保持采样数据与原始数据集的分布一致性。
  2. 特征提取:使用预训练模型提取采样数据的特征表示。这些特征通常具有很好的表达能力,可以用于性能估计。
  3. 性能估计模型:基于采样数据的特征表示,建立一个性能估计模型。这个模型可以是简单的线性回归模型,也可以是更复杂的神经网络模型。
  4. 性能预测:使用性能估计模型对未知数据的性能进行预测。通过输入微调任务的特征表示,模型可以输出预测的性能指标,如准确率、F1分数等。

代码:

import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
import flwr as fl
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import IidPartitioner
from datasets import load_dataset
from flwr.client.mod import fixedclipping_mod
from flwr.server.strategy import (
    DifferentialPrivacyClientSideFixedClipping
)
from utils.utils import * 
from utils.LLM import LLM_fl
from utils.LLM import get_fireworks_api_key,load_env
cfg = get_config("federated")

print_config(cfg)

partitioner = IidPartitioner(num_partitions=cfg.flower.num_clients)
fds = FederatedDataset(
    dataset=cfg.dataset.name,
    partitioners={"train": partitioner}
)

partition_zero = fds.load_partition(0) 

format_dataset(partition_zero)

(20个客户端均分数据集)

visualize_partitions(fds)

获取分词器(tokenizer)、数据整理器(data collator)和格式化提示函数(formatting prompts function):

(
tokenizer,
data_collator,
formatting_prompts_func,
) = get_tokenizer_and_data_collator_and_propt_formatting(
    cfg.model.name, 
    cfg.model.use_fast_tokenizer,
    cfg.train.padding_side,
)

预训练的分词器:EleutherAI/pythia-70m

save_path = "./my_fl_model"
client = fl.client.ClientApp(
    client_fn=gen_client_fn(
        fds,
        tokenizer,
        formatting_prompts_func,
        data_collator,
        cfg.model, 
        cfg.train, 
        save_path,
    ),
    mods=[fixedclipping_mod] 
)

fds:

<flwr_datasets.federated_dataset.FederatedDataset object at 0x7fa271c2f790>

tokenizer:

为联邦学习服务器配置了一个 FedAvg 策略,并添加了差分隐私机制,同时指定了服务器运行的轮数和其他相关参数:

def server_fn(context: Context):

    # Define the Strategy
    strategy = fl.server.strategy.FedAvg(
        min_available_clients=cfg.flower.num_clients, # total clients
        fraction_fit=cfg.flower.fraction_fit, # ratio of clients to sample
        fraction_evaluate=0.0, # No federated evaluation
        # A (optional) function used to configure a "fit()" round
        on_fit_config_fn=get_on_fit_config(),
        # A (optional) function to aggregate metrics sent by clients
        fit_metrics_aggregation_fn=fit_weighted_average,
        # A (optional) function to execute on the server after each round. 
        # In this example the function only saves the global model.
        evaluate_fn=get_evaluate_fn( 
            cfg.model,
            cfg.train.save_every_round,
            cfg.flower.num_rounds,
            save_path
        ),
    )

    # Add Differential Privacy
    sampled_clients = cfg.flower.num_clients*strategy.fraction_fit
    strategy = DifferentialPrivacyClientSideFixedClipping(
        strategy, 
        noise_multiplier=cfg.flower.dp.noise_mult,
        clipping_norm=cfg.flower.dp.clip_norm, 
        num_sampled_clients=sampled_clients
    )

    # Number of rounds to run the simulation
    num_rounds = cfg.flower.num_rounds
    config = fl.server.ServerConfig(num_rounds=num_rounds)
    
    return fl.server.ServerAppComponents(strategy=strategy, config=config) 

配置和启动一个联邦学习模拟,其中包含了服务器和客户端的应用,以及它们运行所需的资源。通过调用 run_simulation 函数,模拟开始执行,客户端和服务器之间将进行多轮通信,以协作训练一个共享的模型,同时保护数据的隐私:

client_resources = dict(cfg.flower.client_resources)
fl.simulation.run_simulation(
    server_app=server,
    client_app=client,
    num_supernodes=cfg.flower.num_clients,
    backend_config={"client_resources": client_resources,
                    "init_args": backend_setup}
)

运行微调后的模型:

# Load the checkpoint
llm_eval = LLM_fl()

# Load dataset
train_dataset = load_dataset(cfg.dataset.name, split='train')
train_dataset = format_dataset(train_dataset)

# Select training example
example_index = 6

data_point = train_dataset[example_index]

# Print the prompt
llm_eval.eval(data_point['instruction'], verbose=True)

# Print the fine-tuned LLM response
llm_eval.print_response()

# Print the expected output from the medAlpaca dataset
ex_response = format_string(data_point['response'])
print(f"Expected output:\n\t{ex_response}")

结果可视化:

visualize_results(
    results=['7b/pretrained', '7b/cen_10', '7b/fl'])

向集中式精细调整模型提供相同数量的数据:

visualize_results(
    results=['7b/pretrained', '7b/cen_10',
             '7b/cen_full', '7b/fl'],
    compact=True)

计算花销:

cfg = get_config("federated")

compute_communication_costs(cfg, comm_bw_mbps=20)

参考:

【1】LLMs_interview_notes/大模型(LLMs)参数高效微调(PEFT)面/大模型(LLMs)参数高效微调(PEFT)面.md at main · naginoa/LLMs_interview_notes · GitHub

【2】

<think>好的,我现在要处理用户关于大模型微调的问题。用户想了解大模型微调的概念、方法及步骤,以及如何具体进行微调。首先,我需要明确用户的需求,确保回答覆盖了这些方面。根据提供的引用资料,我需要整理出微调的定义、主要方法和步骤,同时可能涉及一些实际应用或示例。 首先,我需要回顾引用内容。引用[1]提到预训练模型无法解决所有问题,特别是专业领域的问题,因此需要使用特定数据集对基础模型进行微调。引用[2]和[3]则讨论了一些具体的微调方法,如Prompt-tuning和不同的阶段学习内容。接下来,我需要将这些信息结构化,分步骤解释微调的过程。 用户可能对微调的基本概念不太清楚,所以需要先定义什么是大模型微调,说明其目的和应用场景。然后,列举主要的微调方法,例如全参数微调、参数高效微调(包括LoRA、Adapter、Prefix-tuning等),以及提示微调。这部分需要结合引用中的信息,例如引用[3]提到的7种方法,可能需要更详细地展开几种常见方法。 接下来是步骤部分,需要分阶段说明如何实施微调。例如,确定任务、准备数据、选择方法、训练配置、微调实施、评估和部署。每个步骤需要简明扼要,但也要足够具体,让用户知道如何操作。同时,可以结合引用中的例子,比如代码示例或提示工程,增强回答的实用性。 还要注意用户可能关心的细节,例如数据准备的具体要求,训练时的参数设置,以及如何选择合适的微调方法。例如,参数高效微调适合资源有限的情况,全参数微调需要更多计算资源,但可能效果更好。这部分需要根据引用[2]和[3]提到的内容进行补充。 另外,用户的问题可能隐含对微调后效果的疑问,比如如何评估模型性能,或者在部署时的注意事项。需要在步骤中涵盖这些点,确保回答全面。同时,生成相关问题时,需要涵盖用户可能进一步询问的方向,例如具体方法的应用、微调中的挑战、行业案例等。 需要确保回答符合系统级指令,特别是正确使用LaTeX格式,避免任何格式错误。例如,数学公式要用$...$或$$...$$,代码块使用正确标记。同时,引用标识要自然地添加在引用的段落末尾,如引用[^1]、[^2]、[^3]。 最后,检查回答的结构是否清晰,逻辑是否连贯,是否覆盖了用户的所有问题点,并确保语言流畅,符合中文表达习惯。可能还需要验证引用内容是否准确对应到相关部分,避免引用错误或遗漏。</think>### 大模型微调的方法与步骤 #### 一、大模型微调的概念 大模型微调(Fine-tuning)指在预训练模型(如GPT、BERT等)的基础上,使用特定领域或任务的数据集进行二次训练,使其适应具体应用场景的过程。这种方法既能继承预训练模型的通用知识,又能针对特定需求优化性能[^1]。 --- #### 二、大模型微调的核心方法 1. **全参数微调(Full Fine-tuning)** 对整个模型的所有参数进行更新,适合数据量充足且计算资源丰富的场景。 公式示例: $$ \theta_{\text{new}} = \theta_{\text{pre}} - \eta \nabla_{\theta} \mathcal{L}(\theta) $$ 其中$\theta_{\text{pre}}$为预训练参数,$\eta$为学习率,$\mathcal{L}$为损失函数。 2. **参数高效微调(Parameter-Efficient Fine-tuning, PEFT)** - **LoRA(Low-Rank Adaptation)** 通过低秩矩阵分解,仅更新部分参数。例如,将权重矩阵分解为$W = W_0 + BA$,仅训练低秩矩阵$B$和$A$[^3]。 - **Adapter** 在模型层间插入小型网络模块,仅训练这些模块的参数。 - **Prefix-tuning** 在输入前添加可学习的向量前缀,通过调整前缀参数优化模型输出。 3. **提示微调(Prompt-tuning)** 通过设计特定的提示(Prompt)引导模型生成目标结果,例如将任务转化为填空形式:“这句话的情感是{__}”[^2]。 --- #### 三、大模型微调的步骤 1. **任务定义与数据准备** - 明确任务类型(如文本分类、问答等)。 - 准备标注数据集,需满足领域相关性和数据质量要求。 2. **选择微调方法** - 资源充足时选择全参数微调; - 资源受限时选择PEFT方法(如LoRA)。 - 少量数据场景可尝试提示微调。 3. **训练配置** - 设置学习率(通常为预训练的$10^{-5}$到$10^{-3}$); - 选择优化器(如AdamW); - 定义损失函数(如交叉熵损失)。 4. **微调实施** ```python # 示例:使用Hugging Face库进行微调 from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir="./results", learning_rate=2e-5, per_device_train_batch_size=16, num_train_epochs=3, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, ) trainer.train() ``` 5. **评估与部署** - 使用验证集评估指标(如准确率、F1值); - 通过A/B测试验证实际效果; - 部署为API服务或集成到业务系统。 --- #### 四、关键注意事项 1. **灾难性遗忘**:微调时需平衡新旧知识,可通过保留部分通用数据或调整学习率缓解。 2. **计算资源**:全参数微调需GPU集群支持,PEFT方法可显著降低显存消耗。 3. **数据隐私**:行业数据需进行脱敏处理,或使用联邦学习框架。 --- 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值