【论文阅读】A Differentially Private Federated Learning ModelAgainst Poisoning Attacks in Edge Computing

边缘计算 联邦学习 差分隐私 中毒攻击

摘要:

(1)前提背景:

  • 边缘计算部署中,资源受限的终端设备存在破坏的可能性,以及被滥用以促进中毒攻击的可能性。
  • 在处理终端设备上的敏感用户数据时,需要隐私保护。

(2)现有方法:

现有的方法只考虑防御中毒攻击或支持隐私,没有同时考虑这两个属性。

(3)提出方法:

提出一种针对中毒攻击差分私有联邦学习模型,该模型专为边缘计算部署而设计。

首先,设计一种基于权重的算法,对边缘节点中终端设备上传的参数进行异常检测,提高小尺寸验证数据集的检测率,并最大限度地降低了通信成本。

其次,利用差分隐私技术来保护边缘计算环境中数据和模型的隐私。

(4)实验评估

评估随机和定制恶意终端设备存在下的检测性能,并将其性能与IEEE可靠与安全计算交易中发表的其他两种竞争方法的性能进行了比较,包括攻击弹性,通信和计算成本。

实验结果表明,该方案能够在安全性、效率和准确性之间达到最佳平衡。

引言

(1)集中式FL服务器易受到单点故障的影响,出现延迟,而许多用户需要在实时系统中进行反馈。

(2)——>边缘计算中的FL为替代方案,每个边缘节点负责从其所在区域的用户中聚集参数,并进一步将其传输到FL服务器进行最终聚合。

(3)边缘计算联邦学习仍存在挑战(安全和隐私威胁)

首先,作为边缘计算中的数据源,资源受限的物联网设备容易受到破坏和中毒攻击,恶意参与者打算通过污染训练数据集来操纵机器学习模型的预测。

其次,隐私保护。通过更新参与者的参数可以提取出几乎相同的模型,从而可以获得局部数据集的统计特征。(参数恢复局部数据集特征)

(4)列举的现有方法

Tolpegin利用主成分分析等降维技术来识别恶意更新。在非iid设置中效果很差,并且检测效果受到参与者数量的影响。此外,它不能提供任何隐私保护。

Zhao提出了一种通过客户端交叉验证检测异常更新的方案,并集成差分隐私来保护敏感数据。但是,这种检测方法成本高,不适合部署在边缘节点上。(前提假设局限性)

本文方法:

提出了一种针对边缘计算中毒攻击差分私有联邦学习模型。旨在支持对端边缘设备上传的参数进行异常检测(即确保模型准确性),并保护终端设备和整体模型中敏感数据的隐私。为抵御恶意设备的合谋攻击,利用小的验证数据集,并动态调整添加噪声的规模,以保护数据隐私不被泄露。

(参数异常检测+动态噪声扰动)

(1)设计一种安全且保护隐私的边缘网络设置联邦学习模型,其中终端设备共同训练准确的神经网络模型,而不会在数据中毒攻击下泄露敏感数据。

(2)该模型通过基于权重的检测方案抵御中毒攻击。使边缘节点能够使用小型验证数据集检测和过滤恶意终端设备上传的异常参数。根据检测结果,边缘节点为参数设置合适的权值,以消除杂散参数对模型的影响。因此,它确保了联邦学习在边缘网络环境下能够抵抗中毒攻击。

(3)该模型既可以保护诚实设备上用户敏感数据的隐私,又可以保护边缘计算环境下的整体模型。我们改进了传统的差分隐私技术,用于边缘网络中的联邦学习。动态添加噪声的。边缘节点和云服务器仅在终端设备当前添加的噪声不满足隐私要求时才会添加额外的噪声,从而最大限度地减少了模型的干扰,提高了精度。

(4)在随机和自定义恶意终端设备存在的三个常见数据集上评估了我们的方案。结果表明,该方案能够高概率地检测到异常参数,并且在攻击恢复能力、通信成本和计算成本方面,与已有的方案相比,能够在安全性、效率和准确性之间取得最佳平衡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值