有 N堆石子,每堆的石子数量分别为 a1,a2,…,aN。
你可以对石子堆进行合并操作,将两个相邻的石子堆合并为一个石子堆,例如,如果 a=[1,2,3,4,5],合并第 2,3堆石子,则石子堆集合变为 a=[1,5,4,5]。
我们希望通过尽可能少的操作,使得石子堆集合中的每堆石子的数量都相同。
请你输出所需的最少操作次数。
本题一定有解,因为可以将所有石子堆合并为一堆。
输入格式
第一行包含整数 T,表示共有 T组测试数据。
每组数据第一行包含整数 N。
第二行包含 N个整数 a1,a2,…,aN。
输出格式
每组数据输出一行结果。
数据范围
1≤T≤10,
1≤N≤105,
0≤ai≤106,
∑i=1nai≤106,
每个输入所有 N
之和不超过 105
。
输入样例:
3
6
1 2 3 1 1 1
3
2 2 3
5
0 0 0 0 0
输出样例:
3
2
0
样例解释
第一组数据,只需要用 3个操作来完成:
1 2 3 1 1 1
-> 3 3 1 1 1
-> 3 3 2 1
-> 3 3 3
第二组数据,只需要用 2
个操作来完成:
2 2 3
-> 2 5
-> 7
第三组数据,我们什么都不需要做。
①这里我们就需要先求出我们全部的石子和是多少,同时将我们的石子堆的个数放入一个vector当中
②然后我们需要从我们最小的元素min1开始逐渐枚举到我们的石子堆的总和sum,取我们指定tmp颗石子为一堆。
从前往后遍历我们的vector,如果相邻的石子堆的数量达到了tmp,就说明可以合并了。然后我们就再找下一个石子堆。
③如果我们全部的石子都可以被分配成每一堆事tmp颗的话,我们就分配完成了
#include<iostream>
#include<vector>
#include<algorithm>
#include<limits.h>
using namespace std;
int main()
{
int test=0;
cin>>test;
while(test--)
{
int count=0,sum=0,min1=INT_MAX,zero=0;
cin>>count;
vector<int> tmp;
while(count--)
{
int n1=0;
cin>>n1;
if(n1!=0)
{
tmp.push_back(n1);
sum+=n1;
//记录石子堆中最小的那一堆
min1=min(min1,n1);
}else{
//对于其中的0,我们需要单独考虑,也就是直接讲0堆跟有数据的堆合并就可以了
//所以0堆的操作次数就是0的个数。
zero++;
}
}
if(sum==0)
{
cout<<0<<endl;
continue;
}
for(int i=min1;i<=sum;i++)
{
//判断能不能分成整数堆,不能就直接下一个i
if((double)sum/(double)i!=(int)sum/(int)i)
{
continue;
}
//tmp1用来记录当前我们这堆有多少石子了
//pointer用来记录我们遍历到哪一个堆了
//operator1用来记录我们操作了几步。
int tmp1=0,pointer=0,operator1=0;
bool flag=true;
while(pointer<tmp.size())
{
while(pointer<tmp.size()&&tmp1<i)
{
tmp1+=tmp[pointer];
pointer++;
operator1++;
}
//这里--是因为比方说5个元素相加,只需要加4次,所以--
operator1--;
if(pointer<tmp.size()&&tmp1==i)
{
tmp1=0;
}else if(pointer==tmp.size()&&tmp1==i){
break;
}else{
flag= false;
break;
}
}
if(flag)
{
cout<<operator1+zero<<endl;
break;
}
}
}
}