Controllable Multi-Interest Framework for Recommendation

Controllable Multi-Interest Framework for Recommendation

introduction&related work

推荐不仅只要精度,更要实现推荐多样化。

related work里介绍了如下主题,提到了很多经典模型(有兴趣可以看看原文):

  • Neural Recommender Systems

  • Sequential Recommendation

  • Recommendation Diversity.

  • Attention

  • Capsule Network

模型架构

对emma的推荐

方法METHODOLOGY

表一是符号(notation)


在这里插入图片描述

这部分重要的是用户多兴趣向量生成

Multi-Interest Framework


两种方法,一种使用动态路由的方法,一种使用self attention

Dynamic Routing:
我们要计算兴趣胶囊 v j v_j vj,首先初始化 b i j b_{ij} bij以此来得到 c i j c_{ij} cij,这里使用0来初始化 b i j b_{ij} bij
c i j = e x p ( b i j ) ∑ K e x p ( b i k ) (3) c_{ij} = {exp(b_{ij}) \over \sum_K{exp(b_{ik})}} \tag3 cij=Kexp(bik)exp(bij)(3)
再计算根据用户项目交互 e i e_i ei计算出high-level-vector “ e ^ j ∣ i {\hat e_{j|i}} e^ji”,以此来得到 s i j s_{ij} sij
s j = ∑ i c i j e ^ j ∣ i (2) s_j = {\sum_i{c_{ij}{\hat e_{j|i}}}} \tag2 sj=icije^ji(2)
e ^ j ∣ i = W i j e i j (1) {\hat e_{j|i}} = W_{ij} e_{ij} \tag1 e^ji=Wijeij(1)
其中每个 W i j W_{ij} Wij对每个兴趣胶囊是不一样的,最终我们可以计算出用户兴趣胶囊 v j v_j vj
v j = s q u a s h ( s i j ) = ∣ ∣ s j ∣ ∣ 2 1 + ∣ ∣ s j ∣ ∣ 2 s j s i j (4) v_j = squash( s_{ij} ) = { { { {||s_j||}^2 }\over{1+||s_j||^2 } }}{s_j\over s_ij}\tag4 vj=squash(sij)=1+sj2sj2sijsj(4)
V u = [ v 1 , . . . . . . v K ] ∈ R d ∗ K V_u=[v_1,......v_K]\in R^{d*K} Vu=[v1,......vK]RdK

使用动态路由更新 b i j b_{ij} bij
在这里插入图片描述

Self-attentive Method:
这里很自然引入self-attention计算用户兴趣胶囊:
a = s o f t m a x ( w 2 ⊤ t a n h ( w 1 H ) ) (1) a = softmax(w_2^{\top}tanh(w_1H))\tag1 a=softmax(w2tanh(w1H))(1)
然后将 w 2 w_2 w2 into a d a d_a da-by- K K K : W 2 W_2 W2
A = s o f t m a x ( W 2 ⊤ t a n h ( w 1 H ) ) (2) A = softmax(W_2^{\top}tanh(w_1H))\tag2 A=softmax(W2tanh(w1H))(2)


training时,求得用户对item的好感度
v u = V u [ : , a r g m a x ( V u ⊤ e i ) ] v_u = V_u [:, argmax(V^{\top}_ue_i)] vu=Vu[:,argmax(Vuei)]
在这里插入图片描述
loss
在这里插入图片描述

在这里插入图片描述

Aggregation Module


But how to aggregate theseitems from different interests to obtain the overall top-N items?
A basic and straightforward way is to merge and filter the items basedon their inner production proximity with user interests, which canbe formalized as:

这里说如何针对不同的用户兴趣,最终选出top_K个item:

本来为了精确度:
在这里插入图片描述
但是前面提到用户的体验更要是多样化的
在这里插入图片描述
在这里插入图片描述

与现有模型的联系

  • 不同于rank阶段的MIMN包含大量复杂计算的循环神经网络,本文模型更简单。
  • 对于MIND,本文模型更能平衡用户体验(即多样性)

实验

指标有recall,HR,NCGD

对比如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验部分总结:

  • attention方法在 K = ( 6 − 8 ) K=(6-8) K=(68)之间表现不错
  • 胶囊方法方法在 K = 2 K=2 K=2 K = 6 K=6 K=6时表现不错
  • 对于后面提到的多兴趣超参数 λ \lambda λ,只能说是要推荐准确就不要多样性,反之一样。

总结

多样性有点牵强,attention效果挺好的

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值