同余式 乘法逆元 费马小定理

是 数论 的基本概念之一,设m是给定的一个正整数,a、b是整数,若满足m| (a-b),则称a与b对模m  ,记为a≡b (mod m),或记为a≡b (m)。

乘法逆元是 数论 的重要内容,两个整数a,b,若a,b互质,且满足ax≡1(mod b),则称x为a模b的乘法逆元,记为a^{-1}

这里乘法逆元可以类别数学上的倒数,即 a 的逆元是\frac{1}{a},也即与 a 相乘得 1 的数。ax=1,则x是a的乘法逆元。

一般在算法竞赛中,会出现数据比较大进而对1e9+7等质数取模,加减乘根据同余直接取模即可,但是若是除法,则中间过程可能会出现无法整除进而影响取模结果

常用的解决方法主要有扩展欧几里得算法和费马小定理,本文主要介绍费马小定理。

费马小定理

费马小定理是 数论中 的一个重要定理。如果p是一个质数,而整数a不是p的倍数,则有

a^{p-1} \equiv 1(mod p)

费马小定理的证明

构造质数p的完全剩余系即一个与p互质的序列,A={1,2,3,...,p-1}

因为gcd(a,p)=1,可得A={1a,2a,3a,...,(p-1)a}

则有1\times 2\times 3\times...\times(p-1)\equiv a\times2a\times3a\times...\times(p-1)a(mod p)

也即(p-1)!\equiv (p-1)!\times a^{p-1}(modp)

又因为gcd((p-1)!, p) =1,则同余式两边可约去(p-1)!,由此得到

a^{p-1}\equiv 1(modp)

证毕。

现在回到前面的乘法逆元,那么根据同余式转化得

a\times a^{p-2}\mod p\equiv 1

a^{p-2}就是a的乘法逆元。

首先求乘法逆元前我们要明白a与p必须互质才能求乘法逆元。

对于这种求幂次我们很容易想到就是快速幂,即:

int qpow(int a, int b, int mod){
  int ans = 1;
  while(b){
    if(b & 1) ans = ans * a % mod;
    b  >>= 1;
    a = a * a % mod;
  }
  return ans;
}

我们可以举个例子,例如\frac{1}{6}x%mod(保证6与mod互质),则其结果就是:

int get_ans(){
  return x * qpow(6, mod - 2) % mod;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值