同余式是 数论 的基本概念之一,设m是给定的一个正整数,a、b是整数,若满足m| (a-b),则称a与b对模m 同余 ,记为a≡b (mod m),或记为a≡b (m)。
乘法逆元是 数论 的重要内容,两个整数a,b,若a,b互质,且满足ax≡1(mod b),则称x为a模b的乘法逆元,记为
这里乘法逆元可以类别数学上的倒数,即 a 的逆元是
,也即与 a 相乘得 1 的数。ax=1,则x是a的乘法逆元。
一般在算法竞赛中,会出现数据比较大进而对1e9+7等质数取模,加减乘根据同余直接取模即可,但是若是除法,则中间过程可能会出现无法整除进而影响取模结果
常用的解决方法主要有扩展欧几里得算法和费马小定理,本文主要介绍费马小定理。
费马小定理
费马小定理是 数论中 的一个重要定理。如果p是一个质数,而整数a不是p的倍数,则有
费马小定理的证明:
构造质数p的完全剩余系即一个与p互质的序列,A={1,2,3,...,p-1}
因为,可得A={1a,2a,3a,...,(p-1)a}
则有
也即
又因为,则同余式两边可约去(p-1)!,由此得到
证毕。
现在回到前面的乘法逆元,那么根据同余式转化得
则就是a的乘法逆元。
首先求乘法逆元前我们要明白a与p必须互质才能求乘法逆元。
对于这种求幂次我们很容易想到就是快速幂,即:
int qpow(int a, int b, int mod){
int ans = 1;
while(b){
if(b & 1) ans = ans * a % mod;
b >>= 1;
a = a * a % mod;
}
return ans;
}
我们可以举个例子,例如(保证6与mod互质),则其结果就是:
int get_ans(){
return x * qpow(6, mod - 2) % mod;
}