AtCoder Beginner Contest 283 (A~F)

比赛名称:UNIQUE VISION Programming Contest 2022 Winter(AtCoder Beginner Contest 283)

比赛链接:AtCoder Beginner Contest 283

A - Power

题意:

求A^B(1<=A,B<=9)

要注意这个int强制转换,不然9^9输出结果时387420489,会wa,QAQ~

#include <bits/stdc++.h>
using namespace std;
signed main(){
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
  int n, m;
  cin >> n >> m;
  cout << (int)pow(n, m) << "\n";
  return 0;
}

B - First Query Problem 

题意:

给定一个数组a和 q个操作

  • 1 k x ,ak = x
  • 2 k ,输出ak
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 6;
int a[N];
signed main(){
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
  int n;
  cin >> n;
  for(int i = 1; i <= n; i++) cin >> a[i];
  int q, x, v;
  cin >> q;
  while(q--){
    int op;
    cin >> op;
    if(op == 2) {
      cin >> x;
      cout << a[x] << "\n";
    }else{
      cin >> x >> v;
      a[x] = v;
    }
  }
  return 0;
}

C - Cash Register 

题意:

有一个收银机,有11个键。00,0,1,2,3,4,5,6,7,8和9。收银机最初显示0。每当他输入00键时,显示的数字就会乘以100;每当他输入其他键时,显示的数字就会乘以10,然后再加上键上的数字。高桥想让收银机显示一个整数S,至少需要多少次按键才能使它显示S?

思路:

按字符串处理,如果遇到连续的00只需要一次操作即可,其他也都是一次操作

写得有点麻烦了~

#include <bits/stdc++.h>
#define int long long
using namespace std;
signed main(){
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
  string s;
  cin >> s;
  int ans = 1;
  for(int i = 1; i < s.size();){
    if(s[i] != '0') ans ++, i++;
    else{
      if(s[i + 1] == '0' && i + 1 < s.size()) ans ++, i+=2;
      else ans++, i++; 
    }
  }
  cout << ans << "\n";
  return 0;
}

D - Scope 

题意:

一共有11中关键词: 00,0,1,2,3,4,5,6,7,8,9。给出一个数字,求这个数字由多少个关键词组成?

思路: 

用模拟栈存每个离)最近的(,当遇到)就把括号中的小写字母全部删去

#include <bits/stdc++.h>
using namespace std;
int main(){
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
  string s;
  cin >> s;
  vector<int> p;
  vector<int> C;
  vector<bool> vis(30, false);
  bool ok = true;
  int f = 0;
  for(int i = 0; i < s.size(); i++){
    if(s[i] == '(') p.push_back(i);
    else if(s[i] == ')'){
      int k = p.back();
      p.pop_back();
      while(!C.empty() && C.back() > k){
        vis[s[C.back()] - 'a'] = false;
        C.pop_back();
      }
    }else{
      if(vis[s[i] - 'a']){
        ok = false;
        break;
      }
      vis[s[i] - 'a'] = true;
      C.push_back(i); 
    }
  }
  cout << (ok ? "Yes\n" : "No\n");
  return 0;
}

E - Don't Isolate Elements 

题意:

给一个01矩阵,每次可以翻转某行的01,问最少的操作次数使得,没有一个位置的上下左右都与其不同

思路:

动态规划

 每行都有且只有两种状态,翻转或不翻转,所以定义状态dp[i][j][k]表示,前i行已经确定,第i-1行的状态位j,第i行状态为k时使合法的操作数

状态转移方程:dp[i][j][k] = min(dp[i][j][k], dp[i - 1][u][j] + k)

#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int n, m;
int a[N][N], f[N][2][2];
 
bool check(int i, int x, int y, int z){
  for (int j = 1; j <= m; j++){
    if (a[i][j] != a[i][j - 1] && a[i][j] != a[i][j + 1] && (a[i][j] ^ y) != (a[i - 1][j] ^ x) && (a[i][j] ^ y) != (a[i + 1][j] ^ z)){
      return 0;
    }
  }
  return 1;
}
 
int main(){
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
  memset(a, -1, sizeof a);
  cin >> n >> m;
  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++)
      cin >> a[i][j];
 
  memset(f, 0x3f, sizeof f);
  f[1][0][0] = 0;
  f[1][0][1] = 1;
  for (int i = 2; i <= n; i++)
    for (int j = 0; j < 2; j++)
      for (int k = 0; k < 2; k++)
        for (int l = 0; l < 2; l++)
          if (check(i - 1, j, k, l))
            f[i][k][l] = min(f[i][k][l], f[i - 1][j][k] + l);
 
  int ans = 0x3f3f3f3f;
  for (int i = 0; i < 2; i++)
    for (int j = 0; j < 2; j++)
      for (int k = 0; k < 2; k++)
        if (check(n, i, j, k))
          ans = min(ans, f[n][i][j]);
  
  cout << (ans == 0x3f3f3f3f ? -1 : ans) << "\n";
  return 0;
}

 F - Permutation Distance

题意:

给一个排列p,求d数组

其中d数组满足

 思路:

由上总共四种情况

d_{i} = \left\{\begin{matrix} p_{i}-p_{j}+i-j&p_{i}>p_{j} &i>j \\ -p_{i}+p_{j}+i-j&p_{i}<p_{j} &i>j \\ p_{i}-p_{j}-i+j&p_{i}>p_{j} &i<j \\ -p_{i}+p_{j}-i+j&p_{i}<p_{j} &i<j \end{matrix}\right.

所以我们可以发现可以用一个数据结构去维护|pi+i|,根据不同的限制条件,最后算四种情况下的最小值

这里我们选择树状数组来维护,具体见代码。

AcCode:

#include <bits/stdc++.h>
#define lowbit(x) x & (-x)
#define inf 0x3f3f3f3f
using namespace std;
const int N = 1e6 + 9;
int n;
int tr[N], p[N], ans[N];
 
void add(int x, int v){
  for(int i = x; i <= n; i += lowbit(i))
    tr[i] = min(tr[i], v); 
}
 
int query(int x){
  int ans = inf;
  for(int i = x; i; i -= lowbit(i))
    ans = min(ans, tr[i]);
  return ans;
}
 
signed main(){
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
  cin >> n;
  for(int i = 1; i <= n; i++) cin >> p[i], ans[i] = inf;
  memset(tr, 0x3f, sizeof tr);
  for(int i = 1; i <= n; i++){
    ans[i] = min(ans[i], query(p[i]) + p[i] + i);
    add(p[i], -p[i] - i);
  }
  memset(tr, 0x3f, sizeof tr);
  for(int i = 1; i <= n; i++){
    ans[i] = min(ans[i], query(n + 1 - p[i]) - p[i] + i);
    add(n + 1 - p[i], p[i] - i);
  }
  memset(tr, 0x3f, sizeof tr);
  for(int i = n; i >= 1; i--){
    ans[i] = min(ans[i], query(p[i]) + p[i] - i);
    add(p[i], -p[i] + i);
  }
  memset(tr, 0x3f, sizeof tr);
  for(int i = n; i >= 1; i--){
    ans[i] = min(ans[i], query(n + 1 - p[i]) - p[i] - i);
    add(n + 1 - p[i], p[i] + i);
  }
  for(int i = 1; i <= n; i++) cout << ans[i] << " \n"[i == n];
  return 0;
}

G题,EX题嗷嗷待补~QAQ~摸了 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值