(7/22数论板子)快速幂+快速幂求逆元+扩展欧几里得算法+线性同余方程

1.快速幂

给定 nn 组 ai,bi,piai,bi,pi,对于每组数据,求出 abiimodpiaibimodpi 的值。

输入格式

第一行包含整数 nn。

接下来 nn 行,每行包含三个整数 ai,bi,piai,bi,pi。

输出格式

对于每组数据,输出一个结果,表示 abiimodpiaibimodpi 的值。

每个结果占一行。

数据范围

1≤n≤1000001≤n≤100000,
1≤ai,bi,pi≤2×1091≤ai,bi,pi≤2×109

输入样例:

2
3 2 5
4 3 9

输出样例:

4
1

代码:

将k拆分,利用二进制各位可以表示所有的数

#include <bits/stdc++.h>

using namespace std;
typedef long long int ll;
ll qmi(int a,int b,int p)
{
    ll res=1%p;
    while(b)
    {
        if(b&1) res=res*a%p;
        a=a*(ll)a%p;//a不断更新,变成上一个a的平方然后%p
        b>>=1;//砍掉b的二进制的最后一位
    }
    return res;
}
int main()
{
    int t,a,b,p;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d %d %d",&a,&b,&p);
        printf("%lld\n",qmi(a,b,p));
    }
    return 0;
}

 2.快速幂求逆元

给定 nn 组 ai,piai,pi,其中 pipi 是质数,求 aiai 模 pipi 的乘法逆元,若逆元不存在则输出 impossible

注意:请返回在 0∼p−10∼p−1 之间的逆元。

乘法逆元的定义

若整数 b,mb,m 互质,并且对于任意的整数 aa,如果满足 b|ab|a,则存在一个整数 xx,使得 a/b≡a×x(modm)a/b≡a×x(modm),则称 xx 为 bb 的模 mm 乘法逆元,记为 b−1(modm)b−1(modm)。
bb 存在乘法逆元的充要条件是 bb 与模数 mm 互质。当模数 mm 为质数时,bm−2bm−2 即为 bb 的乘法逆元。

输入格式

第一行包含整数 nn。

接下来 nn 行,每行包含一个数组 ai,piai,pi,数据保证 pipi 是质数。

输出格式

输出共 nn 行,每组数据输出一个结果,每个结果占一行。

若 aiai 模 pipi 的乘法逆元存在,则输出一个整数,表示逆元,否则输出 impossible

数据范围

1≤n≤1051≤n≤105,
1≤ai,pi≤2∗1091≤ai,pi≤2∗109

输入样例:

3
4 3
8 5
6 3

输出样例:

1
2
impossible

思路:根据费马定理a^(p-1)=1(mod p) 可以算出b的逆元就是b^(p-2);

#include <bits/stdc++.h>

using namespace std;
typedef long long int ll;
ll qmi(int a,int b,int p)
{
    ll res=1%p;
    while(b)
    {
        if(b&1) res=res*a%p;
        a=a*(ll)a%p;
        b>>=1;
    }
    return res;
}
int main()
{
    int t,a,b,p;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d %d",&a,&p);
        int res=qmi(a,p-2,p);
        if(a%p==0)//如果a是p的倍数,那么a*a^(p-2)也是p的倍数,所以a*a^(p-2)%p=0,没有逆元
            printf("impossible\n");
        else
            printf("%lld\n",res);
    }
    return 0;
}

 3.扩展欧几里得算法

给定 nn 对正整数 ai,biai,bi,对于每对数,求出一组 xi,yixi,yi,使其满足 ai×xi+bi×yi=gcd(ai,bi)ai×xi+bi×yi=gcd(ai,bi)。

输入格式

第一行包含整数 nn。

接下来 nn 行,每行包含两个整数 ai,biai,bi。

输出格式

输出共 nn 行,对于每组 ai,biai,bi,求出一组满足条件的 xi,yixi,yi,每组结果占一行。

本题答案不唯一,输出任意满足条件的 xi,yixi,yi 均可。

数据范围

1≤n≤1051≤n≤105,
1≤ai,bi≤2×1091≤ai,bi≤2×109

输入样例:

2
4 6
8 18

输出样例:

-1 1
-2 1

利用裴蜀定理和欧几里得算法;

#include <bits/stdc++.h>

using namespace std;
typedef long long int ll;
int exgcd(int a,int b,int &x,int &y)
{
   if(!b)
   {
       x=1,y=0;
       return a;
   }
   int d=exgcd(b,a%b,y,x);
   y-=a/b*x;
   return d;
}
int main()
{
    int t,a,b,p;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d %d",&a,&b);
        int x,y;
        exgcd(a,b,x,y);
        printf("%d %d\n",x,y);
    }
    return 0;
}

 4.线性同余定理

给定 nn 组数据 ai,bi,miai,bi,mi,对于每组数求出一个 xixi,使其满足 ai×xi≡bi(modmi)ai×xi≡bi(modmi),如果无解则输出 impossible

输入格式

第一行包含整数 nn。

接下来 nn 行,每行包含一组数据 ai,bi,miai,bi,mi。

输出格式

输出共 nn 行,每组数据输出一个整数表示一个满足条件的 xixi,如果无解则输出 impossible

每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。

输出答案必须在 intint 范围之内。

数据范围

1≤n≤1051≤n≤105,
1≤ai,bi,mi≤2×1091≤ai,bi,mi≤2×109

输入样例:

2
2 3 6
4 3 5

输出样例:

impossible
-3

利用扩展欧几里得算法就可以做。只需要将最终的答案乘上b/d就行

#include <iostream>
#include <algorithm>
//代码来自y总
using namespace std;

int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

int main()
{
    int n;
    scanf("%d", &n);

    while (n -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        int x, y;
        exgcd(a, b, x, y);
        printf("%d %d\n", x, y);
    }

    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值