一、题目描述
给定一个包含 n + 1
个整数的数组 nums
,其数字都在 [1, n]
范围内(包括 1
和 n
),可知至少存在一个重复的整数。
假设 nums
只有 一个重复的整数 ,返回 这个重复的数 。
你设计的解决方案必须 不修改 数组 nums
且只用常量级 O(1)
的额外空间。
示例 1:
输入:nums = [1,3,4,2,2] 输出:2
示例 2:
输入:nums = [3,1,3,4,2] 输出:3
示例 3 :
输入:nums = [3,3,3,3,3] 输出:3
提示:
1 <= n <= 10^5
nums.length == n + 1
1 <= nums[i] <= n
nums
中 只有一个整数 出现 两次或多次 ,其余整数均只出现 一次
二、解题思路
由于数组中的数字都在 [1, n] 范围内,我们可以使用快慢指针的方法来解决这个问题。这个方法类似于在链表中寻找环的入口。具体步骤如下:
- 将数组视为一个链表,其中每个元素的值表示下一个元素的索引(即 nums[nums[i]] 是下一个元素的索引)。
- 定义快慢指针,分别初始化为 nums[0] 和 nums[nums[0]]。
- 快指针每次移动两步,慢指针每次移动一步。
- 当快慢指针相遇时,将慢指针重新指向数组起始位置,并让快慢指针每次都移动一步。
- 当快慢指针再次相遇时,相遇的元素即为重复的数。
三、具体代码
class Solution {
public int findDuplicate(int[] nums) {
// 快慢指针初始化
int slow = nums[0];
int fast = nums[nums[0]];
// 寻找快慢指针相遇点
while (slow != fast) {
slow = nums[slow];
fast = nums[nums[fast]];
}
// 重新初始化慢指针
slow = 0;
// 寻找重复的数
while (slow != fast) {
slow = nums[slow];
fast = nums[fast];
}
return slow;
}
}
四、时间复杂度和空间复杂度
1. 时间复杂度
-
第一个
while
循环:在这个循环中,快指针每次移动两步,慢指针每次移动一步。由于数组中存在一个环,快指针最终一定会追上慢指针。假设环的长度为 L,那么快指针最多移动 2L 步,慢指针最多移动 L 步。由于每个元素最多被访问两次(一次由快指针,一次由慢指针),所以这个循环的时间复杂度是 O(n)。 -
第二个
while
循环:在这个循环中,快慢指针每次都移动一步。它们从数组的开始和环的入口同时移动,最终在环的入口相遇。这个循环中,每个元素最多被访问一次,所以这个循环的时间复杂度也是 O(n)。
由于这两个循环是顺序执行的,总的时间复杂度是 O(n) + O(n) = O(n)。
2. 空间复杂度
在这个算法中,我们只使用了几个额外的变量(slow
和 fast
),这些变量只占用常数级的额外空间,因此空间复杂度是 O(1)。我们不需要额外的数据结构来存储中间结果或索引,所以空间效率非常高。
五、总结知识点
-
数组与索引关系:数组中的每个元素都可以被视为指向下一个元素的索引,这种关系可以用来模拟链表的行为。
-
快慢指针技术:快慢指针是一种用于解决链表中的环问题的算法技术。在这个问题中,尽管输入是一个数组,但是通过将数组元素视为链表节点,我们能够应用快慢指针技术来找到重复的元素。
-
循环与相遇点:使用
while
循环来迭代数组,直到快慢指针相遇,这表明它们在环中相遇了。 -
链表环的入口:当快慢指针相遇后,将一个指针重新指向数组的起始位置,然后两个指针以相同的速度移动,它们会在环的入口(即重复的元素)相遇。
-
数组边界条件:算法假设输入数组至少包含一个重复元素,并且数组的长度至少为 2。
-
整型变量操作:代码中涉及基本的整型变量赋值和比较操作,这是 Java 程序设计的基础。
-
递归与迭代:虽然代码没有直接使用递归,但是快慢指针的移动可以看作是一种迭代过程,它隐式地模拟了递归访问链表节点。
以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。