机器学习(自定义预测阈值)

import pickle
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
with open(r"D:\models\gender_model_1.pkl","rb") as f:
    model_pickle=f.read()
model_new = pickle.loads(model_pickle)

data = pd.read_csv(r"D:\data\gender_testdata.csv")
X=data.drop(["gender"],axis=1).values
Y=np.array(data["gender"])
y_pred = model_new.predict(X)
y_prob = model_new.predict_proba(X)
y_yuzhi = []
y_prob[:,1]
for i in y_prob[:,1]:
    if i>=0.6:
        y_yuzhi.append(1)
    else:
        y_yuzhi.append(0)
print(metrics.classification_report(Y,y_pred))
print(metrics.classification_report(Y,y_yuzhi))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值