参考:
一、NVIDIA驱动安装与更新
首先查看电脑的显卡版本,步骤为:此电脑右击-->管理-->设备管理器-->显示适配器。就可以看到电脑显卡的版本了。
没有感叹号的话驱动基本没问题
我们按下win+R组合键,打开cmd命令窗口。输入如下的命令。得到显卡的最高支持的CUDA版本,我们就可以根据这个信息来安装环境了。
nvidia-smi
有问题可以参考开头的第一篇引用或自行百度
二、Anaconda 的安装
打开网址,现在是2024年12月,对应的anaconda版本是支持python3.12。如果想下载之前的版本,或者更低python版本的anaconda,可以打开网址。
或者历史版本官方网址:https://repo.anaconda.com
本次2024.12.23直接在官网【Download Now | Anaconda】下载的版本:
just me是说只供当前用户使用。all user 是供使用这台电脑的所有用户使用,是权限问题。对空间影响不大。如果你的电脑上只有建了一个用户,all users和just me 的作用是一样的。
然后点击next,当让你选择安装安装路径的时候,一定不要选择默认安装位置,因为默认位置是c盘,以后要在anaconda里面创建环境的时候会很占内存,我的位置:
和图中一样将图中的√勾上,虽然出现红色的警告,但是要勾上,将anaconda添加到环境变量中去。然后点击完成就好了。
三、Pytorch环境安装【可以暂时跳过,具体项目再来配置】
按下开始键(win键),点击如图中的图标。打开anaconda的终端。
【或者cmd打开电脑终端,进行换源和新建环境等操作】
一些常用指令:
执行如下的指令查看有哪些环境
conda env list
创建虚拟环境conda create -n 环境名字(英文) python=x.x(python版本),如下,我就是创建了一个名字叫pytorch,python是3.8版本的环境。
conda create -n pytorch python=3.8
输入y同意:
当安装好了以后,执行conda env list这个命令,就可以看到比一开始多了一个pytorch这个环境。现在我们可以在这个环境里面安装深度学习框架和一些Python包了。
执行如下命令,激活这个环境。conda activate 虚拟环境名称
conda activate pytorch
【科学上网的话可以不换!!】 安装pytorch-gup版的环境,由于pytorch的官网在国外,下载相关的环境包是比较慢的,所以我们给环境换源。在pytorch环境下执行如下的命名给环境换清华源。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
然后打开pytorch的官网,可以看见最新版本的至少要求python3.9以上,所以点击历史版本
已知条件:
1.开头我们通过驱动检测到我的显卡为 RTX4080s,最高支持cuda12.6版本,
2.创建了一个名字叫pytorch,python是3.8版本的环境。
3.我后面想跑的项目要求的环境配置:Mask R-CNN源码解析(Pytorch)_哔哩哔哩_bilibili
以及截至2024.23.24博主的github里的所需环境配置说明:WZMIAOMIAO/deep-learning-for-image-processing: deep learning for image processing including classification and object-detection etc.
4.【环境搭建】Python、PyTorch与cuda的版本对应表_pytorch cuda版本对应关系-CSDN博客
选择pytorch1.9【我不确定,先试试呗】,
回到Previous PyTorch Versions | PyTorch官网里面,找到这个版本【我不确定,先试试呗】【试过了,不兼容,卸载重下见五.2(1)】,
选择cuda11.3版本的cuda,然后将下面红色框框中的内容复制下来,如果换源的话一定不要把后面的-c pytorch -c conda-forge也复制下来,因为这样运行就是还是在国外源下载,这样就会很慢。
在自建的pytorch环境下安装:
conda install pytorch==1.9.1 torchvision==0.10.1 torchaudio==0.9.1 cudatoolkit=11.3 -c pytorch -c conda-forge
等待中:
装完了:
验证见【五.2(1)】
四、paddlepaddle环境安装【先跳过,后面要用再来装】
五、pycharm安装--验证CUDA和cudnn版本【验证部分先跳过了】
1.pycharm安装
打开这个pycharm网址,可以发现一共有两个版本一个是专业版(Professional),一个是社区版(Community),专业版是需要花钱的,好几百美元一年。而社区版是免费的,但是也够用了,所以就下载安装社区版就好了。
本次安装的PyCharm版本记录:
安装位置记录:
√都勾上:
稍选之后重启:
新建项目:
我的location在D:\PycharmProjects,name是test
pycharm项目的布局如下:
找到anaconda安装目录下的conda.exe并选择,然后加载
然后就会加载出来,可以选择使用现有环境也可以新建,由于我这里只有一个base环境,anaconda没有提前新建其他环境所以只有一个
当我在anaconda里面创建了一个名为pytorch的环境之后再操作,就有了对应的选项:
其他博客【肆十二】可能是这样:
也可能是这样:【炮哥】
【炮哥的这个方法不太一样,这种可以显示python版本,我这个版本的PyCharm不行】,但可以通过下面这里找到:
然后右下角就也会显示python版本啦:
两种方法前面图标也不同:
【后续验证部分,等我anaconda建了新环境再补充】
2.验证cuda和cudnn的版本
(1)pytorch
我们先选择pytorch环境。
验证代码:
import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.is_available())
print(torch.cuda_version)
print(torch.backends.cudnn.version())
提示:
False
False
None
None
推测是版本不兼容导致的。
卸载相关依赖:
conda remove pytorch torchvision torchaudio cudatoolkit
再试这个版本:【还是不行,再卸载】
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge
再试试v1.9.1用pip安装,在wheel标题下
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
不行,报错:
换个版本:
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
终于成功了!!
(2)paddlepaddle【四、跳过了,这一部分也先跳过】
“另外,如果你需要安装新的包或者是修改对应的包,只需要在pycharm中自带的命令提示符中安装即可。”