【环境搭建】Python、PyTorch与cuda的版本对应表

一个愿意伫立在巨人肩膀上的农民......

        在深度学习的世界里,选择合适的工具版本是项目成功的关键。CUDA、PyTorch和Python作为深度学习的三大支柱,它们的版本匹配问题不容忽视。错误的版本组合可能导致兼容性问题、性能下降甚至项目失败。因此,深入理解这三个组件之间的版本对应关系,是每一个深度学习开发者必须掌握的技能。

话不多说,上表格。。。

常见的Python和PyTorch版本对应关系。

PyTorch版本对应的Python
PyTorch1.0Python 2.7,3.5,3.6,3.7
PyTorch1.1Python 2.7,3.5,3.6,3.7
PyTorch1.2Python 2.7,3.5,3.6,3.7
PyTorch1.3Python 2.7,3.5,3.6,3.7
PyTorch1.4Python 2.7,3.5,3.6,3.7,3.8
PyTorch1.5Python 3.5,3.6,3.7,3.8
PyTorch1.6Python 3.5,3.6,3.7,3.8
PyTorch1.7Python 3.5,3.6,3.7,3.8
PyTorch1.8Python 3.6,3.7,3.8,3.9
PyTorch1.9Python 3.6,3.7,3.8,3.9
PyTorch2.0Python 3.8,3.9,3.10
PyTorch2.1Python 3.8,3.9,3.10,3.11
PyTorch2.2Python 3.8,3.9,3.10,3.11
PyTorch2.3Python 3.10,3.11,3.12
PyTorch2.4Python 3.10,3.11,3.12
PyTorch2.5Python 3.9,3.10,3.11,3.12,3.13

Python 3.9也支持PyTorch2.5,本消息由粉丝@qq_58515558测试提供,感谢。

/*更新于2024年12月6日175514*/

常见的Torch、CUDA和Python版本的对应关系。

Torch版本

可选的CUDA版本

支持的Python版本

2.5.0cu118,cu121,cu124cp39,cp310,cp311,cp312,cp313
2.4.1cu118,cu121,cu124cp310,cp311,cp312
2.4.0cu118,cu121,cu124cp310,cp311,cp312
2.3.1cu118,cu121cp310,cp311,cp312
2.3.0cu118,cu121cp310,cp311,cp312
2.2.2cu118,cu121cp38,cp39,cp310,cp311
2.2.1cu118,cu121cp38,cp39,cp310,cp311
2.2.0cu118,cu121cp38,cp39,cp310,cp311
2.1.2cu118,cu121cp38,cp39,cp310,cp311
2.1.1cu118,cu121cp38,cp39,cp310,cp311
2.1.0cu118,cu121cp38,cp39,cp310,cp311
2.0.1cu117,cu118cp38,cp39,cp310,cp311
2.0.0cu117,cu118cp38,cp39,cp310,cp311
1.13.1cu116,cu117cp37,cp38,cp39,cp310
1.13.0cu116,cu117cp37,cp38,cp39,cp310
1.12.1cu113,cu116cp37,cp38,cp39,cp310
1.12.0cu113,cu116cp37,cp38,cp39,cp310
1.11.0cu113,cu115cp37,cp38,cp39,cp310
1.10.2cu102,cu111,cu113cp36,cp37,cp38,cp39
1.10.1cu102,cu111,cu113cp36,cp37,cp38,cp39
1.10.0cu102,cu111,cu113cp36,cp37,cp38,cp39
1.9.1cu102,cu111cp36,cp37,cp38,cp39
1.9.0cu102,cu111cp36,cp37,cp38,cp39
1.8.1cu101,cu102,cu111cp36,cp37,cp38,cp39
1.8.0cu101,cu111cp36,cp37,cp38,cp39
1.7.1cu101,cu110cp36,cp37,cp38,cp39
1.7.0cu101,cu110cp36,cp37,cp38
1.6.0cu101cp36,cp37,cp38
1.5.1cu92,cu101cp35,cp36,cp37,cp38
1.5.0cu92,cu101cp35,cp36,cp37,cp38
1.4.0cu92cp35,cp36,cp37,cp38
1.3.1cu92cp35,cp36,cp37
1.3.0cu92cp35,cp36,cp37
1.2.0cu92cp35,cp36,cp37

欢迎在这里评论、沟通、指正。

创作不易,引用请附原文链接。。。。。。

### 在 PyQt5 中集成 Mayavi 实现数据可视化 为了在 PyQt5 应用程序中集成 Mayavi 进行数据可视化,通常会利用 `traitsui` 和 `mayavi.mlab` 提供的功能来创建嵌入式的三维图形窗口。下面介绍一种常见的方式,在 PyQt5 的主界面中加入 Mayavi 可视化组件。 #### 创建 Qt 主应用程序框架并加载 Mayavi 场景 首先定义一个继承自 `QWidget` 或者其他合适部件类的新类作为应用的主要容器,并在这个新类里初始化 Mayavi 渲染场景: ```python from pyface.qt import QtGui, QtCore from mayavi.core.ui.api import MlabSceneModel from mayavi.tools.util import get_immediate_subclasses import numpy as np class MainWindow(QtGui.QMainWindow): def __init__(self): super(MainWindow, self).__init__() # 设置中心 widget 并设置布局管理器 central_widget = QtGui.QWidget() layout = QtGui.QVBoxLayout(central_widget) # 添加 Mayavi scene 到 layout container = QtGui.QWidget() layout.addWidget(container) # 初始化 Mayavi Scene Model self.scene = MlabSceneModel() # 构建 Mayavi 图形引擎实例并当前的 QWidget 关联起来 from tvtk.pyface.ui.qt4.scene_editor import SceneEditor editor = SceneEditor(scene=self.scene) ui = editor.edit_traits(parent=container, kind='subpanel').control layout.addWidget(ui) self.setCentralWidget(central_widget) if __name__ == "__main__": app = QtGui.QApplication.instance() or QtGui.QApplication([]) window = MainWindow() window.show() # 测试绘制一些简单的 3D 数据点 x, y, z = np.random.random((3, 10)) window.scene.mlab.points3d(x, y, z) app.exec_() ``` 上述代码展示了如何在一个标准的 PyQt5 GUI 程序内引入 Mayavi 绘图功能[^2]。这里的关键在于使用了 `MlabSceneModel()` 来获取一个新的 Mayavi 场景区模型对象;接着通过 `tvtk.pyface.ui.qt4.SceneEditor` 类将此模型绑定至特定的小部件上显示出来。 需要注意的是,要使这段代码正常工作,计算机环境中应该已经正确安装好了必要的 Python 包,比如 PyQt5、Mayavi、TVTK 等等。如果遇到依赖项缺失的情况,则可能需要按照提示信息调整环境配置或是解决潜在的兼容性问题[^3]。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值