归并排序算法(算法求解+实际应用+代码)

归并排序实质上是一种分治算法。

算法实质:

  1. 确定分界点,取数组中间位置mid 
  2. 递归处理两边,分别进行排序  query(左)query(右)
  3. 将两边进行归并排序(合二为一)

算法时间复杂度

        O( nlog(n) )  (logn 层,每层遍历n个)

实际应用:

  •  小和问题:

        在随机元素,随机数组大小的数组中,找出左边比右边元素小的所有元素之和。

        (归并排序是分段进行排序,在归并操作完成前,右边数组的所有数是一直保持在左边数组的右边。因此可以通过归并时判断大小时求解)

  • 逆序对问题

        逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<j 且 a[i] > a[j],则其为一个逆序对;否则不是。 

        给定一个长度为 n的整数数列,请你计算数列中的逆序对的数量。

        同理。

代码:

import java.io.*;

class Main{
    static int N = 100010;
    static int n;
    static int[] q = new int[N];
    public static void main(String[] args) throws IOException{
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        n = Integer.parseInt(in.readLine());
        String[] s = in.readLine().split(" ");
        for(int i=0;i<n;i++)
            q[i] = Integer.parseInt(s[i]);
        
        query_sort(q,0,n-1);
        
        for(int i=0;i<n;i++)
            System.out.print(q[i]+" ");
    }
    
    public static void query_sort(int[] q,int l,int r){
        if(l>=r) return;

        // 确定分界点
        int mid = l+r>>1;

        // 递归处理两边数组
        query_sort(q,l,mid);
        query_sort(q,mid+1,r);

        // 递归完后两边数组都是排好序的
        // 归并
        int i = l, j = mid+1, k=0;
        int[] a = new int[r-l+1]; //取一个新数组,将比较后的值装在里面、
        // 进行比较
        while(i<=mid&&j<=r){
            if(q[i]<=q[j])
                a[k++] = q[i++];
            else
                a[k++] = q[j++];
        }
        // 将剩余的装入数组
        while(i<=mid)
            a[k++] = q[i++];
        while(j<=r)
            a[k++] = q[j++];
        
        // 装回原数组
        for(i=l,j=0;i<=r;i++){
            q[i] = a[j++];
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值