差分概念:
给定一个原数组,构造一个差分数组,使得。
使用场景1:
给定一个数组,进行多次区间的增加、减少操作。
一维差分:
如何构造:
insert(l,r,c){
b[l] += c;
b[r+1] -= c;
}
- 初始化:
for(int i=1;i<=n;i++)
insert(i, i, a[i]);
- 对 区间内的所有数加上C:
insert(l, r, c);
二维差分:
构造一个二维数组数组 ,原数组 是其二维前缀和。
核心操作:给以 为左上角, 为右下角的子矩阵中所有数 加上。
如何构造:
insert(int x1,int y1,int x2,int y2,int c){
b[x1][y1] += c;
b[x2+1][y1] -= c;
b[x1][y2+1] -= c;
b[x2+1][y2+1] += c;
}
- 初始化
insert(i,j,i,j,a[i][j]);
- 给 和 区间加上一个c
如何求 (前缀和公式)
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
b[i][j] += b[i-1][j]+b[i][j-1]-b[i-1][j-1];
}
}