差分(前缀和的逆运算)

一维差分

对于一个数组a[ ],我们构造一个数组b[ ],使得:
a [ i ] = ∑ k = 1 i b [ k ] a[i] = \sum_{k = 1}^ib[k] a[i]=k=1ib[k]
即a[ ]为b[ ]的前缀和。

1. 先思考:将a[ ]中某一段[l, r]之间的数加上c,对于b[ ]的影响如何?

在这里插入图片描述
由图可知:由于a[ ]中绿色部分都加上了c,那么对于b[ ]来说:

  • 最前面被加的那个数的对应位置要加上c,即b[l] += c。这样在a[ ]求前缀和的时候,l之后的所有元素才会被加上c;
  • 同时,由于a[ ]只是r之前的数加了c,r之后的数不变,所以对于b[ ]来说,r之后的第一个数还要减去c,即b[r + 1] -= c。这样才能保证a[r+1]及之后的数不变。
2. 构造差分数组

数组a[ ]可以看成是,每个位置都加上了一个a[i]。因此我们遍历一遍,对b[ ]做n次操作即可构造差分数组:

int main() {
	for(int i = 1; i <= n; i ++) {
		cin >> a[i];
		insert(i, i, a[i]);
	}
}
void insert(int l, int r, int c) {// 差分核心操作
	b[l] += c;
	b[r + 1] -= c;
}

二维差分

对于一个数组a[ ][ ],我们构造一个数组b[ ][ ],使得:
a [ i ] [ j ] = ∑ k 1 = 1 i ∑ k 2 = 1 j b [ k 1 ] [ k 2 ] a[i][j] = \sum_{k_1 = 1}^i \sum_{k_2 = 1}^j b[k_1][k_2] a[i][j]=k1=1ik2=1jb[k1][k2]

用一维差分类似的方法,可以得到:

int main() {
	for(int i = 1; i <= n; i ++ )
		for(int j = 1; j <= m; j ++ ){
			cin >> a[i][j];
			insert(i, j, i, j, a[i][j]);	
		}
}
void insert(int x1, int y1, int x2, int y2, int c) {
	b[x1][y1] += c;
	b[x1][y2 + 1] -= c;
	b[x2 + 1][y1] -= c;
	b[x2 + 1][y2 + 1] += c;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值