安装torch\torch-geometric

文章提供了安装CPU和GPU版本的torch以及torch-geometric的详细步骤,包括检查CUDA版本、选择合适的PyTorch版本、使用特定源进行安装,并解决了torch-geometric安装时可能出现的问题,给出了直接下载安装包和使用特定命令的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1) cpu:

直接用以下代码顺利完成安装:

pip install torch== -i https://pypi.tuna.tsinghua.edu.cn/simple/

pip install torch-cluster torch-scatter torch-sparse -i https://pypi.tuna.tsinghua.edu.cn/simple/

(2)gpu:

按照以上的步骤没安装成功:

1、cuda版本和torch对应,但是pytorch2.0不支持geometric

torch-geometric 需要与 PyTorch 版本完全兼容,否则会出现不可预期的错误。由于 PyTorch 2.0 不再被支持,所以 torch-geometric 没有针对该版本进行开发和测试。 

pip install torch==<your_pytorch_version>
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-<your_pytorch_version>+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-<your_pytorch_version>+${CUDA}.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-<your_pytorch_version>+${CUDA}.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-<your_pytorch_version>+${CUDA}.html
pip install torch-geometric==<your_torch_geometric_version>



安装gpu版本的torch-geometric
pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.1+cu110.html
pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.1+cu110.html
pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.1+cu110.html
pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.1+cu110.html

其中 <your_pytorch_version><your_torch_geometric_version> 分别替换为你想要安装的 PyTorch 和 torch-geometric 版本号。

cu111 表示 CUDA 11.1 版本,如果你使用的是其他版本的 CUDA,需要对应修改。

2、建议换为torch2.0以下的进行安装:

先查看cuda 版本【这里我是11.7】

找对应的torch版本:

CUDA 11.7 支持的 PyTorch 版本包括:

  • PyTorch 1.10.0
  • PyTorch 1.9.0

其中,PyTorch 1.9.0 是一个支持 CUDA 11.1/11.2/11.3/11.4/11.5/11.6/11.7 的稳定版本。而 PyTorch 1.10.0 更是增加了对 CUDA 11.4/11.5/11.6/11.7 的原生支持。

注意:安装前先卸载之前安装的torch相关软件:

a、CUDA Toolkit 是 NVIDIA 提供的一套用于开发和运行 CUDA 应用程序的软件包。CUDA 是一种并行计算平台和编程模型,可以利用 GPU 加速各种应用程序的计算过程。

CUDA Toolkit 包含以下组件:

  1. CUDA 编译器:用于将 CUDA C/C++ 代码编译成可以在 GPU 上执行的二进制代码。

  2. CUDA 运行时库:包含 GPU 加速的数学函数库、通信库、并行算法等。

  3. CUDA 驱动程序:用于与 GPU 硬件进行交互,管理 GPU 内存等底层操作。

  4. CUDA 工具集:包括了 CUDA Profiler、CUDA Visual Profiler、CUDA-GDB 和 nvprof 等工具,用于分析和调试 CUDA 应用程序。

安装 CUDA Toolkit 可以使你的计算机支持 CUDA 技术,并且可以使用 CUDA 软件开发包(SDK)进行 GPU 加速的开发和优化。如果你想要在计算中使用 GPU 计算,建议先安装相应版本的 CUDA Toolkit,并确保你的计算机中有支持 CUDA 的 NVIDIA 显卡。



进行安装:

pip install torch==1.13.1+cu117 torchvision==0.10.0+cu116 torchaudio==0.9.0+cu116 -f https://download.pytorch.org/whl/cu117/torch_stable.html
ps:CUDA 11.7对应的cudatoolkit版本应该为11.3
pip install torch===1.5.1 torchvision===0.6.1 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.douban.com/simple





pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-<your_pytorch_version>+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-<your_pytorch_version>+${CUDA}.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-<your_pytorch_version>+${CUDA}.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-<your_pytorch_version>+${CUDA}.html
pip install torch-geometric==<your_torch_geometric_version>



20230523更新:

安装gpu版本的torch-geometric

前提:根据以下已知已有的torch=1.10.2   cuda=11.3

print(torch.__version__)
print(torch.version.cuda)

(1)按照scatter cluster sparse  geometric 顺序进行安装

前三个:

pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.2+cu113.html
pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-1.10.2+cu113.html
pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-1.10.2+cu113.html
pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.10.2+cu113.html

安装geometric:

很多教程都是直接 pip install torch-geometric

出现报错:

清华源无法查找

解决:

(1)直接在官网找到包 下载,然后安装

(2)使用以下命令直接安装

pip install --no-cache-dir --index-url https://pypi.org/simple/ torch-geometric

 相关链接:

Links for torch-geometric (tsinghua.edu.cn)

https://data.pyg.org/whl/torch-1.10.2%2Bcu113.html

https://data.pyg.org/whl/

Links for torch-geometric (pypi.org)


(32条消息) 快速安装torch_geometric_torch_geometric 清华源_Cyril_KI的博客-CSDN博客
先下载包后安装



补充:安装torch gpu

尝试很多方法,这行命令,安装速度快、不卡顿!

### PyTorchTorch-Geometric 的 CUDA 11.0 环境安装指南 要在 CUDA 11.0 环境下正确安装 PyTorchtorch-geometric,需遵循以下方法: #### 步骤说明 1. **安装兼容的 PyTorch 版本** 需要先确认适合 CUDA 11.0 的 PyTorch 版本。根据官方文档中的兼容性矩阵[^2],PyTorch 1.7.x 或更高版本支持 CUDA 11.0。推荐使用 `conda` 进行安装以简化依赖管理。 使用以下命令安装 PyTorch 并指定 CUDA 11.0: ```bash conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch ``` 2. **安装 torch-scatter、torch-sparse 等扩展包** 安装 torch-geometric 前需要确保其依赖项已正确配置。这些依赖通常包括 `torch-scatter`, `torch-sparse`, `torch-cluster`, `torch-spline-conv` 等。由于不同系统的 Python 和 CUDA 组合可能不完全匹配最新版本,因此建议手动指定合适的版本号。 对于 CUDA 11.0 和 PyTorch 1.7.1 的组合,可以从官方仓库下载对应版本的扩展包[^3]: ```bash pip install torch-scatter==2.0.6 torch-sparse==0.6.9 torch-cluster==1.5.7 torch-spline-conv==1.2.0 -f https://data.pyg.org/whl/torch-1.7.0+cu101.html ``` 3. **安装 torch-geometric** 在完成上述依赖后,可以直接通过 pip 安装 torch-geometric: ```bash pip install torch-geometric ``` 4. **验证安装是否成功** 执行一段简单代码来测试安装效果[^4]: ```python import torch from torch_geometric.data import Data edge_index = torch.tensor([[0, 1], [1, 0]], dtype=torch.long) x = torch.tensor([[-1], [1]], dtype=torch.float) data = Data(x=x, edge_index=edge_index) print(data) ``` 如果运行无误且能正常打印数据结构,则表明安装成功。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值