问题描述:
一个正整数,如果交换高低位以后和原数相等,那称这个数为回文数。曾经有个数学加猜想:任意的一个数如果不是回文数,将该数交换高低位以后和原数相加得到一个新的数字,如果还不是回文数,重复这个变化,一定能得到一个回文数。请你通过程序来验证此猜想。
输入格式:
输入一行正整数n
输出格式:
输出一个整数,表示得到该回文数的变换次数。
接下来一行,输出变换过程,相邻的数之间用"--->"连接。
样例输入:
349
样例输出:
3
349--->1292--->4213--->7337
解题过程及思路:
本题需要判断一个数是否为回文数,故建立一个judge函数体,给函数体输入一个数,将数的每一位依次存入a数组,再通过前后所存的数进行比较,判断是否为回文数,若是传回true,否则传回false,具体代码如下:
bool judge(int x){
int cnt=0;
while(x){
a[cnt++]=x%10;
x/=10;
}
for(int i=0;i<cnt/2;i++){
if(a[i]!=a[cnt-1-i]){
return false;
}
}
return true;
}
题中将该数交换高低位以后得到的一个新的数字,我们通过rev函数体进行实现,其核心代码为cnt=cnt*10+x%10;因为x%10得到的是原数字的最后一位,交换高低位最后一位被换到首位,所以先存入原数字的最后一位,并每次乘以十再加上原数的上一位,直到x的值为零终止循环。并传回cnt。具体代码如下:
int rev(int x){
int cnt=0;
while(x){
cnt=cnt*10+x%10;
x/=10;
}
return cnt;
}
输入初始数据n,因为要将运算过程进行输出,故将n和n改变的数据统统存入num数组中,方便之后的输出,用judge函数判断是否为回文数,将该数交换高低位以后和原数相加得到一个新的数字,再进行判断,直到出现回文数。并按规定进行输出,具体代码如下:
int main (){
int n;
int m=0;
cin>>n;
num[m++]=n;
while(!judge(n)){
n+=rev(n);
num[m++]=n;
}
cout<<m-1<<endl;
for(int i=0;i<m;i++){
if(i!=m-1){
cout<<num[i]<<"--->";
}else{
cout<<num[i]<<endl;
}
}
return 0;
}
完整代码:
#include<bits/stdc++.h>
using namespace std;
int num[10000];
int a[1000];
bool judge(int x){
int cnt=0;
while(x){
a[cnt++]=x%10;
x/=10;
}
for(int i=0;i<cnt/2;i++){
if(a[i]!=a[cnt-1-i]){
return false;
}
}
return true;
}
int rev(int x){
int cnt=0;
while(x){
cnt=cnt*10+x%10;
x/=10;
}
return cnt;
}
int main (){
int n;
int m=0;
cin>>n;
num[m++]=n;
while(!judge(n)){
n+=rev(n);
num[m++]=n;
}
cout<<m-1<<endl;
for(int i=0;i<m;i++){
if(i!=m-1){
cout<<num[i]<<"--->";
}else{
cout<<num[i]<<endl;
}
}
return 0;
}
运行结果: