【数据分享】1981—2023年中国逐日归一化植被指数(NDVI)栅格数据

NDVI,全名为Normalized Difference Vegetation Index,中文名称为归一化植被指数。这个指数可以用来定性和定量评价植被覆盖及其生长活力,我们也可以简单地将它理解为体现植被密度和健康状况的一个指标。

本次我们给大家分享的是1981年6月24日至2023年5月10日的分辨率为0.05°的逐日无缝隙归一化植被指数(NDVI)栅格数据!

数据来源于西北工业大学陕西秦岭生态智能监测与保护重点实验室等单位的学者在figshare平台上分享的数据。该数据是在国家海洋和大气管理局(NOAA)气候数据记录(CDR)计划提供的每日NDVI数据集的基础上,通过时空序列填充等方式获得的一个长期的、每日的、无间隙的归一化植被指数(NDVI)数据集。原始数据为nc格式的数据,为了方便大家使用,我们将数据转换为了tif栅格格式!

大家可以在公众号回复关键词 268 按照转发要求获取该数据,以下为数据的详细信息:

01 数据预览

我们以2023年1月1日和5月1日的NDVI数据为例来预览一下:

2023年1月1日全国范围的NDVI数据
2023年5月1日全国范围的NDVI数据

02 数据详情

数据来源

源自西北工业大学陕西秦岭生态智能监测与保护重点实验室等单位的学者在figshare平台上分享的数据,网址为:https://figshare.com/s/16f1fbaff259272249f1

数据说明

(1)本数据采用了一种结合有效数据识别和时空序列插值技术的NDVI数据重建框架,在国家海洋和大气管理局(NOAA)气候数据记录(CDR)计划提供的每日NDVI数据集的基础上通过填充等方式生成逐日无间隙NDVI数据集。

(2)本数据通过与原始NOAA CDR有效NDVI数据集、MODIS MCD19A3CMG日间NDVI数据集、GIMMS3g月度NDVI数据集、MODIS MOD13C2月度NDVI数据集和SPOT/PROBA月度NDVI数据集进行对比验证,评估了重建NDVI数据的质量。结果表明,重建NDVI数据与上述数据集在时空变化趋势上具有高度一致性。

数值说明

该数据的数值区间在-1000至1000之间,在使用之前需要将数值乘以一个比例因子0.001,才能得到为-1—1之间的归一化植被指数数值!

数据格式

nc格式和geotiff格式

时间范围:

1981年6月24日—2023年5月10日(逐日)

地理坐标系

GCS_WGS_1984

空间分辨率

0.05°×0.05°

空间范围:

全国(含我国港澳台地区)

数据引用:

Li, H., Cao, Y., Xiao, J. et al. A daily gap-free normalized difference vegetation index dataset from 1981 to 2023 in China. Sci Data 11, 527 (2024). https://doi.org/10.1038/s41597-024-03364-3

如有数据使用需求请按照官方平台的要求进行引用,更多数据详情可以查看官网获悉!

03 数据获取

如需获取数据请关注下方公众号~

### 如何生成与AI阅读相关的文章 生成与AI阅读相关文章的过程可以通过多种方式完成,具体取决于所需的内容质量和复杂度。以下是几种常见的方法和工具: #### 方法一:使用生成式人工智能(AI) 生成式人工智能是一种强大的工具,可以帮助创建高质量的文章内容[^1]。为了生成与AI阅读相关的文章,可以采用以下策略: - **明确目标**:定义文章的具体主题,例如“如何通过AI改善阅读体验”或“AI在教育领域的应用”。这有助于引导生成过程并获得更精确的结果。 - **提供上下文信息**:向生成器输入足够的背景资料,以便更好地理解所需的语境。 #### 方法二:借助专门的AI写作工具 像Bearly这样的基于人工智能的写作工具能够自动生产自然语言文本,包括但不限于文章、句子以及评论等内容[^2]。这些平台通常具备以下几个特点: - 支持多样的写作风格; - 可定制化程度高,允许用户指定语气、长度及其他参数; - 集成了先进的NLP技术和算法来确保输出的质量。 下面是一个简单的Python脚本示例,展示如何调用API接口从第三方服务获取生成好的文字材料: ```python import requests def generate_ai_article(api_key, topic): url = f"https://api.example.com/generate?topic={topic}&key={api_key}" response = requests.get(url) if response.status_code == 200: return response.json()["content"] else: raise Exception("Failed to retrieve article") # Example usage try: api_key = "your_api_key_here" generated_text = generate_ai_article(api_key, "Artificial Intelligence Reading") print(generated_text) except Exception as e: print(e) ``` 此代码片段展示了如何通过网络请求远程服务器上的资源,并将其解析为可读形式的数据结构。 #### 方法三:探索综合型AI工具集合 除了单一功能的应用程序外,还有许多综合性更强的服务站点提供了广泛的选择范围,涵盖了几乎所有类型的创作需求[^3]。例如,在上述提到的一个汇总列表里包含了多个分类下的产品推荐,其中就涉及到了不少专注于撰写科技类题材或者学术论文方向的作品生成引擎。 综上所述,无论是单独依靠某款特定软件还是组合运用各类辅助手段,只要合理规划流程并与实际应用场景相结合,则完全可以轻松达成制作关于人工智能读书方面的优质文案的目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值