NDVI,全名为Normalized Difference Vegetation Index,中文名称为归一化植被指数。这个指数可以用来定性和定量评价植被覆盖及其生长活力,我们也可以简单地将它理解为体现植被密度和健康状况的一个指标。
之前我们给大家分享过来源于NASA定期发布的MOD13A3数据集的2000—2023年逐月全国和分省的归一化植被指数(NDVI)栅格数据、2000-2023年全国逐年归一化植被指数栅格平均值数据和2000-2023年全国逐年归一化植被指数栅格最大值数据(均可查看之前的文章获悉详情)!
本次我们给大家分享的是1981年6月24日至2023年5月10日的分辨率为0.05°的逐日无缝隙归一化植被指数(NDVI)栅格数据!
数据来源于西北工业大学陕西秦岭生态智能监测与保护重点实验室等单位的学者在figshare平台上分享的数据。该数据是在国家海洋和大气管理局(NOAA)气候数据记录(CDR)计划提供的每日NDVI数据集的基础上,通过时空序列填充等方式获得的一个长期的、每日的、无间隙的归一化植被指数(NDVI)数据集。
原始数据为nc格式的数据,为了方便大家使用,我们将数据转换为了tif栅格格式!该数据的数值范围为-1000到1000之间,这个时候可能有人会纳闷,这数值不对啊,NDVI应该是位于-1—1之间。这是因为原数据的数值扩大了1000倍。之所以扩大1000倍,是因为扩大后栅格数值就变成了整数,整数储存所需空间更小,如果是小数则需要用双精度储存,则需更大的空间来存储。为了方便大家使用,我们将原始数据乘上了系数0.001得到-1—1之间的数据。
因此,本次我们分享的1981—2023年的中国区域逐日NDVI数据包括如下三种数据:
①原始的NC格式数据,数值范围-1000——1000;
②NC格式转出的TIF格式数据,数值范围-1000——1000;
③乘以系数0.001得到的标准化TIF格式数据,数值范围:-1——1
大家可以在公众号回复关键词 268 按照转发要求获取该数据,以下为数据的详细信息:
01 数据预览
我们以2023年1月1日的NDVI栅格数据为例来预览一下:


02 数据详情
数据来源:
源自西北工业大学陕西秦岭生态智能监测与保护重点实验室等单位的学者在figshare平台上分享的数据,网址为:https://figshare.com/s/16f1fbaff259272249f1
数据说明:
(1)本数据采用了一种结合有效数据识别和时空序列插值技术的NDVI数据重建框架,在国家海洋和大气管理局(NOAA)气候数据记录(CDR)计划提供的每日NDVI数据集的基础上通过填充等方式生成逐日无间隙NDVI数据集。
(2)本数据通过与原始NOAA CDR有效NDVI数据集、MODIS MCD19A3CMG日间NDVI数据集、GIMMS3g月度NDVI数据集、MODIS MOD13C2月度NDVI数据集和SPOT/PROBA月度NDVI数据集进行对比验证,评估了重建NDVI数据的质量。结果表明,重建NDVI数据与上述数据集在时空变化趋势上具有高度一致性。
数据格式:
nc格式和geotiff格式
数值说明:
(1)官网原始数据:数值在-1000—1000之间
(2)乘以系数0.001后的数据:数值在-1—1之间
时间范围:
1981年6月24日—2023年5月10日(逐日)
地理坐标系:
GCS_WGS_1984
空间分辨率:
0.05°×0.05°
空间范围:
全国(含我国港澳台地区)
数据引用:
Li, H., Cao, Y., Xiao, J. et al. A daily gap-free normalized difference vegetation index dataset from 1981 to 2023 in China. Sci Data 11, 527 (2024). https://doi.org/10.1038/s41597-024-03364-3
如有数据使用需求请按照官方平台的要求进行引用,更多数据详情可以查看官网获悉!
03 数据获取
如需获取数据请关注下方公众号~