【数据分享】1929-2024年NOAA全球站点逐日气象指标(12个指标)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、能见度等指标。

本次我们给大家带来的是在研究中非常常用的气象数据——美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI)发布的1929——2024年的全球站点逐日气象数据集!

该数据集提供了1929年——2024年的全球1万多个站点的逐日的气象指标。该数据的具体信息包括:

1.时间方面:该数据集的起始年份是1929年,数据持续更新,本次分享的数据的截止时间为2024年12月31号。

2.站点方面:早些年份的站点量较少,比如1929年全球只有21个站点,到了最近的年份,站点量就非常多了,2024年全球范围的观察站点一共有12159个。每个站点的数据保持为一个csv文件!

3.对于每个站点的csv文件,文件中包括了该站点的基本信息以及12个气象指标的数值。

csv文件中每一列数据的解释如下表:

我们从网站下载好了全球范围所有年份的该数据提供大家!另外,很多小伙伴在使用该数据的时候还会遇到一个问题,那就是该数据的每个站点的excel文件名是以站点的代号命名的,没法确定站点的国家和位置,比如我只想用中国范围的站点,那如何筛选出中国范围的站点文件!我们基于这种需求,对原始数据文件的命名进行了调整,改为“站点id_站点位置_国家_(经度,纬度)”的形式,以方便大家筛选所需范围的站点。

大家可以自己去NCEI官网下载原始csv格式的数据,也可以在本公众号回复关键词 354 按照转发要求获取原始csv格式数据,以及我们重命名后的Excel格式的数据!

以下为数据的详细介绍:

01 数据来源

数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),网址为:

https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/,包括了1929—2024年的气象数据,大家可以自己去该网站下载原始数据和获悉更多有关数据详情的介绍。

02 数据处理说明

在原始数据中,有些站点缺失站点名称或者站点经纬度,对于这种站点,我们保留站点的原始文件名,不做修改!

03 数据获取

如有数据需求,欢迎点击下方名片链接,关注我们并咨询获取~

### 使用Matlab处理逐日气象数据中的缺失值 对于逐日气象数据中存在的缺失值,可以采用多种方法来处理这些缺失的数据点。常用的方法包括删除含有缺失值的记录、填充缺失值以及插补法。 #### 删除含有缺失值的记录 如果数据集中存在少量的缺失值,并且这些缺失值不会显著影响分析的结果,可以选择直接移除包含缺失值的数据行或列。这可以通过`rmmissing`函数实现: ```matlab data_cleaned = rmmissing(data); ``` 这种方法简单有效,但在实际应用中可能会导致样本量减少,从而影响统计结果的有效性和可靠性[^1]。 #### 填充缺失值 当不希望丢失任何观测数据时,可以用特定数值代替缺失位置上的NaN(Not a Number)。最简单的做法是以常数替换所有缺失值;更合理的方式则是利用前后相邻的时间点来进行线性内插或其他形式的估计填补空白处。例如: - **使用前一时刻的数据进行填充** ```matlab data_filled_previous = fillmissing(data,'previous'); ``` - **通过后续时间点的数据向前填充** ```matlab data_filled_next = fillmissing(data,'next'); ``` - **基于最近邻近似原则填充** ```matlab data_filled_nearest = fillmissing(data,'nearest'); ``` 上述几种方式适用于不同场景下的需求选择合适的一种即可满足初步的要求[^2]。 #### 插补法 为了获得更加精确和平滑的结果,在很多情况下会考虑采用更为复杂的算法对缺失部分做预测性的补充。MATLAB提供了内置的功能强大的工具箱支持各种类型的插值操作,比如样条曲线拟合(`spline`)、三次多项式回归(`pchip`)等高级技术手段完成高质量的数据修复工作: - **线性插值** ```matlab data_interpolated_linear = interp1(1:length(data), data, 1:length(data),'linear','extrap'); ``` - **样条插值** ```matlab data_interpolated_spline = interp1(1:length(data), data, 1:length(data),'spline','extrap'); ``` - **PCHIP (Piecewise Cubic Hermite Interpolating Polynomial)** ```matlab data_interpolated_pchip = interp1(1:length(data), data, 1:length(data),'pchip','extrap'); ``` 以上三种插值方法各有优劣之处,具体选用哪一种取决于待解决问题的特点和个人偏好等因素综合考量之后决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值