高精度模板

大整数A用是string定义,小整数b用int定义

高精度加法模板

// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
    if (A.size() < B.size()) return add(B, A);
    vector<int> C;
    int t = 0;	//进位
    for (int i = 0; i < A.size(); i ++ )
    {
        t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }

    if (t) C.push_back(t);	//最高位可能还有进位 *不要漏了这行*
    return C;
}

高精度减法模板

// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
    vector<int> C;
    for (int i = 0, t = 0; i < A.size(); i ++ )
    {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) t = 1;
        else t = 0;
    }
    while (C.size() > 1 && C.back() == 0) 				C.pop_back();
	return C;
}

Tips : 该模板需满足A >= B,建立一个函数cmp判断

bool cmp(vector<int> &A, vector<int> &B)
{
    if (A.size() != B.size()) return A.size() > B.size();	//if(A>B)=>返回true,
															//else if(A<B)=>返回false
    for (int i = A.size() - 1; i >= 0; i -- )
        if (A[i] != B[i])
            return A[i] > B[i];

    return true;
}

高精度乘低精度模板

// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b)
{
    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size() || t; i ++ )
    {
        if (i < A.size()) t += A[i] * b;	//该循环有两个判断条件'||',if(**)可排除满足t但不满足i<A.size()的情况                          
        C.push_back(t % 10);
        t /= 10;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();

    return C;
}

高精度除以低精度模板

//  A / b, 商为C ,余数为r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
    vector<int> C;
    r = 0;
    for (int i = A.size() - 1; i >= 0; i -- )	//切记i--勿写错为i++
    {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

高精度*高精度

#include<bits/stdc++.h>
using namespace std;
const int N = 3000;
int x[N],y[N];
int c[N];
string a,b;
int num;
void mults()
{ 
	num = a.size()+b.size()-1;	//最后的结果长度 = 数a的长度+数b的长度 - 1,前面不够补0
	for(int i=0;i<num;i++)
	{
		for(int j=0;j<=i;j++)	c[i] += x[j]*y[i-j];
		if(c[i]>=10)
		{
			c[i + 1] += c[i] / 10;
      		c[i] %= 10;	
		}
	}
	//去掉多余的前导零 
	for(int i=num;i>0;i--)
	{
		if(c[i] == 0)num--;
		else break;
	}
}
int main()
{
	cin>>a>>b;
	memset(x,0,sizeof(x));	//对数组清零
	memset(y,0,sizeof(y));
	for(int i =a.size()-1;i>=0;i--)	x[a.size()-1-i]=a[i] -'0'; 	
	
	for(int i= b.size()-1;i>=0;i--) y[b.size()-1-i]=b[i] -'0'; 
	
	mults();
	
	for(int i=num;i>=0;i--)	 printf("%d",c[i]);
	return 0;
	
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zlq070707

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值