⛄一、BP神经网络成像图像重建简介
1 BP神经网络的图像重建算法原理
在目前基于神经网络的图像重建算法中,网络的类型一般采用BP神经网络。BP网络是一种多层前馈神经网络,它采用后向传播算法,亦称BP算法(首先样本从输入层经各中间层向输出层传播,输出层的各神经元获得网络的输入响应;然后减小目标输出与实际输出误差的方向,从输出层开始经中间层逐层修正各连接权值,以达到学习目的)。
一个三层的BP网络结构,输入层由信号源节点组成,输入信号为测量电容值Ci(i=1,2,…m,本文中我们采用12电极系统,故m=66),第二层为隐含层,之所以被称为“隐层”,是因为它只接受内部输入(来自其它神经元的输入),并且只产生内部输出(到其它神经元的输出)。第三层为输出层,输出信号为图像像素灰度值gi(i=1,2…n)。
BP神经网络的的学习过程由信息正向传播和误差反向传播构成:
1.1 正向传播过程:
输入信息从输入层经隐含层逐层处理,传向输出层。若输出层的实际输出与期望的输出不符,则转入误差的反向传播。
a.输入层:输入值一般为样本各分量输入值,输出值一般等于输入值。
b.隐含层:对于节点j,其输入值△j为其前一层各节点输出值Oi的加权和: