
⛄一、ARMA模型
1 ARMA模型介绍及应用
对于平稳时间序列,自回归移动平均(ARMA)模型可用于研究时间经济变量的变化规律,ARMA(p,q)模型包括一个自回归过程AR§和一个移动平均MA(q)过程,其形式如下:

式(1)中:p,q分别表示滞后的阶数;u1是白噪声序列。
2 ARMA模型的背景知识介绍
ARMA在文献研究中被广泛应用于对时间序列的分析预测,由于大多数经济金融数据满足时间序列的特征,因此该模型尤其适用于研究经济学问题,是拟合满足平稳性约束的时间序列最经典的模型。ARMA 模型是由 AR 自回归过程和 MA 移动平均过程组成的自回归移动平均模型,其基本思想是通过揭示历史时间序列的运行规律,对未来的事物发展进行预测。
在 ARMA(p,q)模型的参数中,p代表自回归部分的滞后阶数,q代表移动平均部分的滞后阶数。通常AR
本文介绍了ARMA模型的概念、背景及其在时间序列分析中的应用,特别是在经济学问题上的预测作用。详细阐述了建模步骤,包括平稳性检验、模型定阶、参数估计和模型检验。提供了部分Matlab源代码,用于建立ARMA21模型并进行卡尔曼滤波。最后,提到了使用的是Matlab 2014a版本,并引用了相关参考文献。
订阅专栏 解锁全文
1225

被折叠的 条评论
为什么被折叠?



