
⛄一、鹈鹕算法优化双向长短时记忆网络简介
1 鹈鹕算法
鹈鹕优化算法(Pelican Optimization Algorithm, POA)是一种新型的自然启发式算法,由 Pavel Trojovský 和 Mohammad Dehghani 在2022年提出。该算法模拟了鹈鹕在狩猎过程中的自然行为,通过逼近猎物和水面飞行两个阶段来优化问题。在逼近猎物阶段,鹈鹕会根据猎物的位置和方向进行搜索;在水面飞行阶段,鹈鹕会根据自身的位置和速度进行调整。该算法已经在多个工程应用中得到了验证,并且在一些问题上表现出了优异的性能。
2 长短记忆网络原理
长短时记忆网络(LSTM)是一种循环神经网络(RNN)的改进模型,它可以在处理长序列数据时有效地避免梯度消失或梯度爆炸的问题。LSTM通过引入三个门控制器(输入门、遗忘门和输出门)来控制信息的流动,从而实现对长期依赖关系的建模。其中,输入门控制新信息的输入,遗忘门控制旧信息的遗忘,输出门控制输出的信息。LSTM在语音识别、自然语言处理、图像描述等领域中都有广泛的应用。虽
本文介绍了使用鹈鹕算法优化的双向长短时记忆网络(POA-biLSTM)进行风电功率预测,详细阐述了算法原理、LSTM的工作机制,并提供了部分Matlab源码。实验结果展示了模型的预测性能,并讨论了模型的超参数选择和训练过程。
订阅专栏 解锁全文
116

被折叠的 条评论
为什么被折叠?



