【风电功率预测】鹈鹕算法优化双向长短时记忆POA-biLSTM风电功率预测(含前后对比)【含Matlab源码 3257期】

本文介绍了使用鹈鹕算法优化的双向长短时记忆网络(POA-biLSTM)进行风电功率预测,详细阐述了算法原理、LSTM的工作机制,并提供了部分Matlab源码。实验结果展示了模型的预测性能,并讨论了模型的超参数选择和训练过程。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、鹈鹕算法优化双向长短时记忆网络简介

1 鹈鹕算法
鹈鹕优化算法(Pelican Optimization Algorithm, POA)是一种新型的自然启发式算法,由 Pavel Trojovský 和 Mohammad Dehghani 在2022年提出。该算法模拟了鹈鹕在狩猎过程中的自然行为,通过逼近猎物和水面飞行两个阶段来优化问题。在逼近猎物阶段,鹈鹕会根据猎物的位置和方向进行搜索;在水面飞行阶段,鹈鹕会根据自身的位置和速度进行调整。该算法已经在多个工程应用中得到了验证,并且在一些问题上表现出了优异的性能。

2 长短记忆网络原理
长短时记忆网络(LSTM)是一种循环神经网络(RNN)的改进模型,它可以在处理长序列数据时有效地避免梯度消失或梯度爆炸的问题。LSTM通过引入三个门控制器(输入门、遗忘门和输出门)来控制信息的流动,从而实现对长期依赖关系的建模。其中,输入门控制新信息的输入,遗忘门控制旧信息的遗忘,输出门控制输出的信息。LSTM在语音识别、自然语言处理、图像描述等领域中都有广泛的应用。虽

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值