【路径规划】寄生捕食算法栅格地图机器人路径规划【含Matlab源码 2821期】

本文介绍了寄生捕食算法的原理及其在栅格地图机器人路径规划中的应用。首先,详细阐述了寄生捕食算法的步骤,包括种群初始化、个体适应度评估、寄生虫侵染和宿主更新等。接着,讨论了栅格地图的概念,以及在路径规划中的重要意义。然后,给出了10x10静态环境地图的创建和障碍物约束条件的处理方法。最后,提供了部分MATLAB源代码并展示了运行结果,该算法在2014a版本的MATLAB上运行,参考了相关学术论文。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

⛄一、寄生捕食算法及栅格地图简介

1 寄生捕食算法
寄生捕食算法(Parasitic Predatory Algorithm)是一种基于生物学现象和行为的启发式优化算法。该算法通过模拟寄生捕食现象中的互动与竞争,来解决优化问题。

寄生捕食算法的基本思想是将问题的解空间中的个体视为“宿主”,而每个个体对应一个“寄生虫”。寄生虫通过与宿主进行交互,通过吸取宿主的信息和资源来提高自己的适应度,并在竞争中寻找更好的解。

该算法的关键步骤如下:
(1)初始化种群:随机生成一群宿主个体和寄生虫个体作为初始解决方案。
(2)评估个体适应度:根据问题的特定评价函数,计算每个宿主和寄生虫个体的适应度。
(3)寄生虫侵染:选择适应度较高的寄生虫个体,将其寄生在适应度较低的宿主上,并更新宿主的解。
(4)宿主更新:根据寄生虫的侵染情况,更新宿主的解。
(5)竞争与选择:根据宿主和寄生虫的适应度ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值