
⛄一、GMDH神经网络法简介
GMDH神经网络法是一种研究变量之间关系的启发式自组织方法。GMDH神经网络法可以自动查找数据中的相互关系、选择模型或网络的最佳结构,并提高现有算法的准确性。Ivakhnenko为更好地预测河流中的鱼类种群,创造了分组数据处理方法(GMDH),使神经元成为具有多项式传递函数的更复杂的单元,并简化了神经元之间的互联,同时开发了用于结构设计和权重调整的自动算法。43-55Ivakhnenko构造的多项式为:

上式(1)也称为Ivakhnenko多项式。其中,m表示每个神经元进入回归模型的变量数量;a,b,c…是多项式中变量的权重;y是响应变量;xi和xj是探索性变量。在研究中,上述模型仅包含主要影响,由此可表示为:
本文介绍了GMDH神经网络法的基本原理及其在时序预测中的应用,通过Matlab实现算法并展示部分源代码。文章详细描述了GMDH神经网络的结构和训练过程,并提供了数据预处理、模型训练和测试的步骤。最后,给出了Matlab版本和参考文献。
订阅专栏 解锁全文
88

被折叠的 条评论
为什么被折叠?



