⛄一、离散余弦变换DCT图像压缩简介
1 离散余弦变换DCT原理
离散余弦变换(Discrete Cosine Transformation,DCT)是一种常用的图像压缩和加密算法,其基本思想是将图像从时域转换到频域进行处理,以减少图像数据的冗余度和复杂度,实现图像压缩和加密等功能。
DCT是一种将实数序列或有限信号分解成一组基频率的变换,是傅里叶变换的一种特例。它基于一组正弦函数的离散变换,可以将一组N个实数序列x(0)、x(1) …… x(N-1)转换成一组N个实数序列c(0)、c(1) …… c(N-1)。
DCT实现的基本原理是将I(x,y)的N行N列的像素值经过DCT变换后,将高频变换系数取0,将变换后的低频变换系数重新排列成N行N列的矩阵。这样就得到了新的像素值序列I’(x,y),通过将原图像I(x,y)的高频系数变换成0,保留其余低频系数的方法,实现了图像压缩的目的。
DCT变换的数学原理是将与DFT(离散傅里叶变换)相似的公式推广到实数序列上进行计算,其主要的区别在于DCT使用的是实数系数,而DFT使用的是复数系数。DCT的基本公式可以写作:
C(k) = α(k)· Σ(x(l) ·cos[(π(k/2N)(2l+1)]))
其中,C(k)表示DCT变换后的第k个系数,α(k)表示
本文详细介绍了离散余弦变换DCT图像压缩的原理,包括DCT变换的数学公式、图像压缩过程以及MATLAB实现。通过DCT变换,图像数据从时域转换到频域,减少数据冗余,实现高效压缩。文章提供了部分MATLAB源代码示例,涉及图像量化压缩的步骤,以及维纳滤波器和中值滤波器在图像处理中的应用。
订阅专栏 解锁全文
2271

被折叠的 条评论
为什么被折叠?



