💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🏫个人主页:Matlab领域
🏆代码获取方式:
CSDN Matlab领域—代码获取方式
🚅座右铭:路漫漫其修远兮,吾将上下而求索。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(高阶版)
②付费专栏Matlab路径规划(进阶版)
③付费专栏Matlab路径规划(初级版)
⛳️关注CSDN Matlab领域,更多资源等你来!!
⛄一、鲸鱼算法及栅格地图简介
1 鲸鱼算法
一种元启发式优化算法,模拟座头鲸狩猎行为的元启发式优化算法。目前的工作与其他群优化算法相比的主要区别在于,采用随机或最佳搜索代理来模拟捕猎行为,并使用螺旋来模拟座头鲸的泡泡网攻击机制。该算法具有机制简单、参数少、寻优能力强等优点,在经济调度、最优控制、光伏系统、图像分割等方面得到广泛的应用。
2.1 算法基本原理
座头鲸有特殊的捕猎方法,这种觅食行为被称为泡泡网觅食法;标准 WOA 模拟了座头鲸特有的搜索方法和围捕机制,主要包括:围捕猎物、气泡网捕食、搜索猎物三个重要阶段。WOA 中每个座头鲸的位置代表一个潜在解,通过在解空间中不断更新鲸鱼的位置,最终获得全局最优解。
(1)围捕猎物(Encircling prey)
鲸鱼的搜索范围是全局解空间,需要先确定猎物的位置以便包围。由于最优设计在搜索速度中的位置不是先验已知的,因此WOA算法假定当前的最佳候选解是目标猎物或接近最优解。在定义了最佳搜索代理之后,其他搜索代理将尝试向最佳搜索代理更新它们的位置。
(2)气泡网捕食:
座头鲸捕食主要有两个机制:包围捕食和气泡网捕食。采用气泡网捕食时,座头鲸与猎物间的位置更新用对数螺旋方程表达.
(3)搜索猎物:
为保证所有鲸鱼能在解空间中充分搜索,WOA 根据鲸鱼彼此之间的距离来更新位置,达到随机搜索的目的。因此,当|A| ≥ 1|时,搜索个体会游向随机鲸。
2.2 算法基本流程
标准 WOA 主要依靠系数向量 A 选择搜索猎物的路径,并利用概率 p 决定最终捕食机制。
步骤 1:设置鲸鱼数量 N 和算法的最大迭代次数 tmax,初始化位置信息;
步骤 2:计算每条鲸鱼的适应度,找到当前最优鲸鱼的位置并保留,即 ;
步骤 3:计算参数 a、p 和系数向量 A、C。判断概率 p 是否小于 50%,是则直接转入步骤 4,否则采用气泡网捕食机制:利用式(2-1)进行位置更新;
步骤 4:判断系数向量 A 的绝对值是否小于 1,是则包围猎物:按式(1-2)更新位置;否则全局随机搜索猎物:按式(3-1)更新位置;
步骤 5:位置更新结束,计算每条鲸鱼的适应度,并与先前保留的最优鲸鱼的位置比较,若优于,则利用新的最优解替换;
步骤 6:判断当前计算是否达到最大迭代次数,如果是,则获得最优解,计算结束,否则进入下一次迭代,并返回步骤 3。
WOA算法首先随机初始化一组解,在每次迭代中,搜索代理根据随机选择的搜索代理或到目前为止获得的最优解更新它们的位置。将 a 参数由 2 随迭代次数降为 0,从而由探索逐步到利用。当 |A|>1 时选择随机搜索代理,|A|< 1时选择最优解更新搜索代理位置。根据 p 的值,WOA可以在螺旋运动和圆环运动之间进行切换。最后,通过满足终止准则来终止WOA算法。
2 栅格地图
2.1 栅格法应用背景
路径规划时首先要获取环境信息, 建立环境地图, 合理的环境表示有利于建立规划方法和选择合适的搜索算法,最终实现较少的时间开销而规划出较为满意的路径。一般使用栅格法在静态环境下建立环境地图。
2.2 栅格法实质
将AGV的工作环境进行单元分割, 将其用大小相等的方块表示出来,这样栅格大小的选取是影响规划算法性能的一个很重要的因素。栅格较小的话,由栅格地图所表示的环境信息将会非常清晰,但由于需要存储较多的信息,会增大存储开销,同时干扰信号也会随之增加,规划速度会相应降低,实时性得不到保证;反之,由于信息存储量少,抗干扰能力有所增强,规划速随之增快,但环境信息划分会变得较为模糊,不利于有效路径的规划。在描述环境信息时障碍物所在区域在栅格地图中呈现为黑色,地图矩阵中标为1,可自由通行区域在栅格地图中呈现为白色,地图矩阵中标为0。路径规划的目的就是在建立好的环境地图中找到一条最优的可通行路径,所以使用栅格法建立环境地图时,栅格大小的合理设定非常关键。
2.3 10乘10的静态环境地图
10乘10的静态环境地图代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境地图%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawMap(map)
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1)) %设置障碍物的左下角点的x,y坐标
for(j=1:n(2))
if(map(i,j)==1)
p(r,1)=j-1;
p(r,2)=i-1;
fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...
[p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');
r=r+1;
hold on
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1:n(1)*n(2)
[row,col] = ind2sub([n(2),n(1)],i);
text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');
end
hold on
axis square
建立环境矩阵,1代表黑色栅格,0代表白色栅格,调用以上程序,即可得到上述环境地图。
map=[0 0 0 1 0 0 1 0 0 0;
1 0 0 0 0 1 1 0 0 0;
0 0 1 0 0 0 1 1 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0 1 0;
1 0 0 0 0 1 1 0 0 0;
0 0 0 1 0 0 0 0 0 0;
1 1 1 0 0 0 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;];
DrawMap(map); %得到环境地图
2.4 栅格地图中障碍栅格处路径约束
移动体栅格环境中多采用八方向的移动方式,此移动方式在完全可通行区域不存在运行安全问题,当
移动体周围存在障碍栅格时此移动方式可能会发生与障碍物栅格的碰撞问题,为解决此问题加入约束
条件,当在分别与障碍物栅格水平方向和垂直方向的可行栅格两栅格之间通行时,禁止移动体采用对
角式移动方式。
约束条件的加入,实质是改变栅格地图的邻接矩阵,将障碍栅格(数字为“1”的矩阵元素)的对角栅格
设为不可达, 即将对角栅格的距离值改为无穷大。其实现MATLAB代码如下:
代码:
%约束移动体在障碍栅格对角运动
%通过优化邻接矩阵实现
%%%%%%%%%%%%%%%%%% 约束移动体移动方式 %%%%%%%%%%%%%%%%%
function W=OPW(map,W)
% map 地图矩阵 % W 邻接矩阵
n = size(map);
num = n(1)*n(2);
for(j=1:n(1))
for(z=1:n(2))
if(map(j,z)==1)
if(j==1) %若障碍物在第一行
if(z==1) %若障碍物为第一行的第一个
W(j+1,j+n(2)*j)=Inf;
W(j+n(2)*j,j+1)=Inf;
else
if(z==n(2)) %若障碍物为第一行的最后一个
W(n(2)-1,n(2)+n(1)*j)=Inf;
W(n(2)+n(1)*j,n(2)-1)=Inf;
else %若障碍物为第一行的其他
W(z-1,z+j*n(2))=Inf;
W(z+j*n(2),z-1)=Inf;
W(z+1,z+j*n(2))=Inf;
W(z+j*n(2),z+1)=Inf;
end
end
end
if(j==n(1)) %若障碍物在最后一行
if(z==1) %若障碍物为最后一行的第一个
W(z+n(2)*(j-2),z+n(2)*(j-1)+1)=Inf;
W(z+n(2)*(j-1)+1,z+n(2)*(j-2))=Inf;
else
if(z==n(2)) %若障碍物为最后一行的最后一个
W(n(1)*n(2)-1,(n(1)-1)*n(2))=Inf;
W((n(1)-1)*n(2),n(1)*n(2)-1)=Inf;
else %若障碍物为最后一行的其他
W((j-2)*n(2)+z,(j-1)*n(2)+z-1)=Inf;
W((j-1)*n(2)+z-1,(j-2)*n(2)+z)=Inf;
W((j-2)*n(2)+z,(j-1)*n(2)+z+1)=Inf;
W((j-1)*n(2)+z+1,(j-2)*n(2)+z)=Inf;
end
end
end
if(z==1)
if(j~=1&&j~=n(1)) %若障碍物在第一列非边缘位置
W(z+(j-2)*n(2),z+1+(j-1)*n(2))=Inf;
W(z+1+(j-1)*n(2),z+(j-2)*n(2))=Inf;
W(z+1+(j-1)*n(2),z+j*n(2))=Inf;
W(z+j*n(2),z+1+(j-1)*n(2))=Inf;
end
end
if(z==n(2))
if(j~=1&&j~=n(1)) %若障碍物在最后一列非边缘位置
W((j+1)*n(2),j*n(2)-1)=Inf;
W(j*n(2)-1,(j+1)*n(2))=Inf;
W(j*n(2)-1,(j-1)*n(2))=Inf;
W((j-1)*n(2),j*n(2)-1)=Inf;
end
end
if(j~=1&&j~=n(1)&&z~=1&&z~=n(2)) %若障碍物在非边缘位置
W(z+(j-1)*n(2)-1,z+j*n(2))=Inf;
W(z+j*n(2),z+(j-1)*n(2)-1)=Inf;
W(z+j*n(2),z+(j-1)*n(2)+1)=Inf;
W(z+(j-1)*n(2)+1,z+j*n(2))=Inf;
W(z+(j-1)*n(2)-1,z+(j-2)*n(2))=Inf;
W(z+(j-2)*n(2),z+(j-1)*n(2)-1)=Inf;
W(z+(j-2)*n(2),z+(j-1)*n(2)+1)=Inf;
W(z+(j-1)*n(2)+1,z+(j-2)*n(2))=Inf;
end
end
end
end
end
2.5 栅格法案例
下面以Djkstra算法为例, 其实现如下:
map=[0 0 0 1 0 0 1 0 0 0;
1 0 0 0 0 1 1 0 0 0;
0 0 1 0 0 0 1 1 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0 1 0;
1 0 0 0 0 1 1 0 0 0;
0 0 0 1 0 0 0 0 0 0;
1 1 1 0 0 0 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境矩阵map%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DrawMap(map); %得到环境地图
W=G2D(map); %得到环境地图的邻接矩阵
W(W==0)=Inf; %邻接矩阵数值处理
W=OPW(map,W); %优化邻接矩阵
[distance,path]=dijkstra(W,1,100);%设置起始栅格,得到最短路径距离以及栅格路径
[x,y]=Get_xy(distance,path,map); %得到栅格相应的x,y坐标
Plot(distance,x,y); %画出路径
运行结果如下:
其中函数程序:
DrawMap(map) 详见建立栅格地图
W=G2D(map) ; 详见建立邻接矩阵
[distance, path] =dijkstra(W, 1, 100) 详见Djk stra算法
[x, y] =Get_xy(distance, path, map) ;
Plot(distance, x, y) ;
⛄二、部分源代码
clc
clear
close all
tic
%% 地图
G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0;
0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;];
for i=1:20/2
for j=1:20
m=G(i,j);
n=G(21-i,j);
G(i,j)=n;
G(21-i,j)=m;
end
end
%%
S = [1 1];
E = [20 20];
G0 = G;
G = G0(S(1):E(1),S(2):E(2));
[Xmax,dimensions] = size(G);
dimensions = dimensions - 2;
X_min = 1;
%% 参数设置
max_gen = 200; % 最大迭代次数
num_polution = 50; % 种群数量
fboj=@(x)fitness(x,G,X_min,Xmax);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]陈云霁,范道生,刘新宇. “基于正弦余弦算法的自主导航机器人路径规划研究.” 自动化学报,2012年,38(8): 1465-1474.
[2]陈云霁,范道生,刘新宇. “基于正弦余弦算法的机器人路径规划实验研究.” 科技通报,2011年,27(11): 68-71.
[3]张银红,杨琳. “基于正弦余弦算法的栅格地图机器人路径规划研究.” 计算机技术与发展,2012年,22(7): 12-15.
[4]刘江波,吴天一. 《栅格地图机器人路径规划算法及其应用》. 清华大学出版社,2016年.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除