💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🏫个人主页:Matlab领域
🏆代码获取方式:
CSDN Matlab领域—代码获取方式
🚅座右铭:路漫漫其修远兮,吾将上下而求索。
更多Matlab语音处理仿真内容点击👇
①Matlab语音处理(高阶版)
②付费专栏Matlab语音处理(进阶版)
③付费专栏Matlab语音处理(初级版)
⛳️关注CSDN Matlab领域,更多资源等你来!!
⛄一、离散小波变换的音频信号数字水印技术简介
0 引言
近年来, 数字水印技术的作用越来越重要。数字水印技术是将一些标识信息直接嵌入数字载体当中, 或间接表示在信号载体中, 且不影响原载体的使用价值。通过隐藏在载体中的这些信息, 可以判断信息是否被篡改, 具有防伪溯源、保护信息安全、版权保护等作用。对于广播转播台站而言, 是广播音频的中转站, 在广播信号发送至千家万户之前务必保证信号的安全可靠, 但现在的大部分台站只是利用人耳的判断, 以及不同信源之间的比较, 具有较大的局限性。若利用数字水印的特性, 应用于广播节目中可以有效地防止信号插播, 可靠地保护信号安全, 保障广播的安全播出。
1 音频数字水印技术分类
根据数字水印在音频信号中的处理技术, 可将数字水印分为时域、变换域、压缩域数字水印。
1.1 时域数字水印
在时域数字水印技术中, 直接将水印信息嵌入至音频信号中, 通常会选择隐藏在信号不重要部位, 以保证其嵌入水印不影响原音频信号的监听效果。时域水印技术的实现较为容易且运算量小, 简单直接, 但是鲁棒性差, 容易被破解, 抵抗力较差。
1.2 变换域数字水印
在变换域数字水印中, 音频信号需经过时域至变换域的转换, 通常的变换域有离散余弦变换 (DCT, Discrete Cosine Transform) 、离散傅立叶变换 (DFT, Discrete Fourier transform) 、离散小波变换 (DWT, Discrete Wavelet Transform) 等。在变换域中嵌入水印信息, 通过反变换得到嵌入水印的音频时域信号。变换域水印技术较时域水印技术复杂, 但变换域嵌入的水印信息较时域而言, 不可见性更强, 隐蔽性更好, 鲁棒性更好。
1.3 压缩域数字水印
在时域和变换域的水印技术, 都是直接将水印信号嵌入未压缩的音频格式中, 但是通常在音频信号的传输或存储中需要对音频信号进行压缩编码 (例如WMA、MP3等) , 因此压缩域数字水印也是水印技术也具有较大的实用价值。压缩域数字水印技术大致可分为三类: (1) 在非压缩域嵌入水印, 将音频信号与水印信息一起压缩; (2) 在压缩域中, 直接将水印信息嵌入压缩的音频信号中; (3) 将压缩后的信号进行解压缩, 然后嵌入水印信息, 最后将水印信息和解压后的音频信号一起压缩。总的来说, 压缩域水印技术的编解码系统过于复杂, 受压缩编码格式限制大, 压缩后的音频信号已经去除了冗余, 因此加入水印的难度大, 压缩域水印技术有待进一步研究。
2 基于SVD的音频水印算法
奇异值分解(Singular Value Decomposition,简称SVD)是一种常用的矩阵分解方法,可以将一个矩阵分解为三个矩阵的乘积。在音频水印嵌入中,SVD可以用于将音频信号分解为主要成分和噪声成分,从而实现水印的嵌入和提取。
音频水印嵌入是一种数字版权保护技术,通过在音频信号中嵌入特定的信息(水印),来保护音频的版权和完整性。SVD在音频水印嵌入中的应用主要有两个方面:嵌入和提取。
在嵌入过程中,首先将音频信号进行SVD分解,得到三个矩阵:左奇异矩阵、奇异值矩阵和右奇异矩阵。然后将水印信息嵌入到奇异值矩阵中,通常是通过修改部分奇异值的数值来实现。最后将修改后的奇异值矩阵与左右奇异矩阵相乘,得到嵌入了水印信息的音频信号。
在提取过程中,首先对含有水印的音频信号进行SVD分解,得到三个矩阵。然后通过对比原始奇异值矩阵和提取出的奇异值矩阵,可以检测出是否存在水印信息。如果存在水印信息,可以进一步提取出水印内容。
加噪滤波是为了增加音频水印的鲁棒性而进行的一种处理。在嵌入水印之前,可以对音频信号进行加入一定程度的噪声。这样可以增加水印的隐蔽性,使得水印更难以被检测和删除。在提取水印时,需要进行相应的滤波处理,将噪声滤除,以便准确提取出水印信息。
⛄二、部分源代码
% 基于SVD的水印嵌入
close all
clear all
clc
%% 读取水印
w=imread(‘shuiyin.bmp’);%请自己修改路径
w=double(w);
sizew=size(w);
l=sizew(1)sizew(2);%音频切分的单元长度
%% 读取原始音频
nx=3;n=nx^2;%预备分块数
[a,fs]=audioread(‘3.wav’,[1,ln]);%请自己修改路径
figure
subplot(3,1,1);plot(a);
title(‘加水印音频波形图’)
subplot(3,1,2);imshow(w)
title(‘原始水印’)
subplot(3,1,3);imshow(wn)
title(‘提取水印’)
ber=cber(w,wn,l);
fprintf(‘加水印后误码率为%f\r’,ber)
%% 加噪,提取水印
n=0.2*randn(size(A));
An=A+n;%加噪
wn=insvd(An,uw,vw,sm,nx,sizew(1),sizew(2),alpha);
figure
subplot(3,1,1);plot(a);
title(‘加水印并加噪音频波形图’)
subplot(3,1,2);imshow(w)
title(‘原始水印’)
subplot(3,1,3);imshow(wn)
title(‘提取水印’)
ber=cber(w,wn,l);
fprintf(‘加水印并加噪音后误码率为%f\r’,ber)
%% 滤波,提取水印
Af=lowp(A,20,20000,0.1,30,fs);
wn=insvd(Af,uw,vw,sm,nx,sizew(1),sizew(2),alpha);
figure
subplot(3,1,1);plot(Af);
title(‘加水印并滤波音频波形图’)
subplot(3,1,2);imshow(w)
title(‘原始水印’)
subplot(3,1,3);imshow(wn)
title(‘提取水印’)
ber=cber(w,wn,l);
fprintf(‘加水印并滤波后误码率为%f\r’,ber)
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合