✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
⛄一、混沌图像加密与解密简介
1 引言
混沌系统是一种高度复杂的非线性动态系统,具有对初始条件非常敏感的特性,由它产生的混沌序列具有随机特性。因此,常把混沌应用用于信息加密中。随着现代通信技术和网络技术的发展,尤其是电子商务的兴起,对信息加密提出了更高的要求。特别是对图像、声音等信息的加密尤为重要。
目前,对图像的加密还是基于传统的数据加密方式,没有利用图像本身的数据特性,因而存在一定的局限性。
本论文中提出的混沌序列生成方式形成新的混沌映射,该混沌映射比提出的混沌映射复杂度更高,而且生成整数值混沌序列仍然具有混沌特性。然后用生成的混沌序列直接加密图像,既改变像素的灰度也改变像素的位置,易实现、计算花费少,加密的实验结果表明其保密性很好,加密后的图像可以完全正确地还原成原始图像。
2 混沌影射
提出了一个具有良好随机统计特性的一维非线形混沌影射,由它生成的混沌序列为某一区域上的整数值混沌序列,具有随机性,且对初值极其敏感。其定义如下:
其中xk∈{1,2,…,m},参数a∈{1,2,…,m},([z],[z]分别表示不大于z的最大整数和不小于z的最小整数。
混沌影射(1)经过n次迭代后形成新混沌影射(2),如下所示,即为本文要运用的影射,同样具有上述混沌影射(1)的混沌特性,记为:
当给定初始值x0,参数a,m的值和迭代次数n的值就确定了由混沌系统(2)生成混沌序列:{xk;k=0,1,2,3…}。该序列具有混沌特性,对初值条件x0极为敏感。本文把参数a与n也作为初始条件,即把有序数组(x0,a,n)一起作为密钥,则攻击混沌系统(2)成功的概率比只把xo作为密钥时攻击成功的概率更小。
举例说明混沌影射(2)生成混沌序列的具体过程。例如:产生[1,371]的一个整数混沌序列,取参数m=371,a=205,下表为混沌序列产生过程,表第一行为迭代次数n,第一列为xk,表中为对应某一xk,n的xk+1:
表1
3 图像加密解密算法
本文用混沌系统(2)生成的混沌序列加密图像,既改变图像像素的位置,同时也改变图像像素的灰度值,该算法简洁、易实现。
3.1 加、解密算法设计
设原始图像为IR,用(i,j,g(i,j))表示这一张图像,(i,j)为某一像素标值,g(i,j)表示该像素的灰度值,这一张图像的大小为M×N个像素。其中0≤i≤M-1,0≤j≤N-1,L为该图像的灰度水平。
3.1.1 加密算法设计
Step 1:输入M,N,原始图像IR=(i,j,g(i,j))。
Step 2:输入一维混沌影射(2)的初始值x0,设置参数a,m的值和迭代次数n的值,用混沌影射(2)生成混沌序列:x0,x1,x2,…,xM+N-1。
Step 3:
利用第二步生成的混沌序列将图像的每行像素右移(循环移动)变换到该行的另一位置,像素的灰度值不改变。变换得到的图像为:(i,j,g1(i,j))。
Step4:
这一步在第三步得到的变换结果(i,j,g1(i,j))的基础上,利用第二步生成的混沌序列将图像的每列像素向下移动(循环移动)变换到该列的另一位置,像素的灰度值不改变。变换得到的图像为:(i,j,g2(i,j))。
Step 6:将第四步得到的结果(i,j,g2(i,j))的每一像素的灰度值改变。
得到加密图像的各个像素的新的灰度值g’(i,j),生成加密图像IE=(i=(i,j,g’(i,j))。
Step 7:终止算法。
3.1.2 解密算法设计
Step1:输入M,N以及加密图像IE。
Step3:
这一步是加密过程的第六步的逆过程,利用第二步生成的混沌序列将加密图像的每一像素的灰度值改变,还原成原来的相应灰度值。得到结果为:(i,j,g2(i,j))。
Step4:输入一维混沌影射(2)的初始值x0,设置参数a,m的值和迭代次数n的值,用混沌影射(2)生成混沌序列:x0,x1,x2,…,xM+N-1。这一步是加密过程的第二步的一致。
Step 5:
这一步是加密过程的第四步的逆过程,将图像(i,j,g2(i,j)的每列像素向上移动(循环移动)变换到该列的另一位置,像素的灰度值不改变。得到的结果为:(i,j,g1,(i,j))。
Step 6:
这一步是加密过程的第三步的逆过程,将图像(i,j,g2(i,j))的每列像素向下左移动(循环移动)变换到该列的另一位置,像素的灰度值不改变。得到的结果为:(i,j,g(i,j))。
得到解密图像的各个像素的新的灰度值,生成解密加密图像ID=(i,j,g(i,j))=IR。还原图像。
Step 7:终止算法。
3.2 加密解密结构图
⛄二、部分源代码
clear;clc;
I=imread(‘lena.bmp’,‘bmp’); %读取图像信息
figure;imshow(I);title(‘原始图片’);
figure;imhist(I);title(‘原始图片直方图’);
axis([0 255 0 4000]);
[M,N]=size(I); %将图像的行列赋值给M,N
t=4; %分块大小
%% 原始图片信息熵
T1=imhist(I); %统计图像灰度值从0~255的分布情况,存至T1
S1=sum(T1); %计算整幅图像的灰度值
xxs1=0;
for i=1:256
pp1=T1(i)/S1; %每个灰度值占比,即每个灰度值的概率
if pp1~=0
xxs1=xxs1-pp1*log2(pp1);
end
end
%% 原始图像相邻像素相关性分析
%{
先随机在0M-1行和0N-1列选中1000个像素点,
计算水平相关性时,选择每个点的相邻的右边的点;
计算垂直相关性时,选择每个点的相邻的下方的点;
计算对角线相关性时,选择每个点的相邻的右下方的点。
%}
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]陈永红,黄席樾.基于混沌序列的图像加密解密算法[J].计算机科学. 2003,(12)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置