文献:徐靖,杨杰,高波,等.通信感知一体化中的无线电地图技术[J],无线电通信技术,2021,47( 6) : 706-717.
0 思考总结
通感一体化中不仅是单设备内通信与感知的融合,还要区域内设备的硬件资源和应用价值协同。延伸出无线电地图技术,将感知信息制成地图供区域内设备使用,减少固定环境特征的重复感知,又能为无感知能力设备提供服务,互惠互利。可专门设备进行构建,也可采取“众包”形式合作构建优化无线电地图。
性能优化需要在环境抽象能力强和数据测量处理需求低寻找折中,专门设备构建过程开销大,跨设备“众包”形式,存在硬件偏差及传统众包机制中的多重计数和数据不可靠等问题。如何解决?
金石教授团队主要关注基于无线环境几何特征的无线电地图技术,聚焦定位应用,扩展经典的BP-SLAM算法。须跟踪以下三篇文章[32-34],深入了解算法。
而在华为研究的这篇《通信感知一体化——从概念到实践》中,在ISAC实现厘米级定位中提出了感知辅助位置估计(Sensing-Assisted Position Estimation,SAPE)方案。与大多数SLAM技术不同,SLAM技术中所有定位工作和处理都在UE侧完成,而SAPE方案需借助基站完成。两者方案可对比探究。
1 背景
1.1 通信感知一体化
通信感知一体化技术是指复用频谱和硬件资源为无线通信系统提供环境感知能力。能够增强无线通信系统的通信能力,并提供了附加的功能和商业价值。随着大规模MIMO技术带来的波束成形和定向传输能力和毫米波频段的充裕带宽资源赋予的无线通信系统更高的时间分辨率,推动通感一体化的研究与发展。
但也带来了挑战,从硬件层面就是在开销和能力上平衡,从应用价值层面,希望不止局限在通信设备内部,而应该服务于更多的内部和外部应用。进而引出无线电地图概念,将区域内通感一体化设备感知到的特征进行汇总和处理,并以一张“地图”形式呈现。
1.2 无线电地图技术
是通信感知一体化的重要技术之一,也是沟通通信与环境的桥梁之一。无线电地图脱离了具体的硬件设备,可以由一个专门的通感一体化设备构建,也可采取“众包”形式,合作构建,上传地图。而无感知能力的设备可直接下载,受益于此技术。
该技术利用感知信息与实际物理位置的关系构建出信息地图,使通信感知结果的展现更加直观和清晰,在感知信息的处理、分析与共享等方面发挥了重要作用。无线电地图技术是通信感知一体化技术的延伸,既避免了固定环境特征的重复感知,又可以服务于无通信感知能力的低成本设备。现有学术成果分为:基于信道参数、基于通信性能和基于无线环境几何特征的3类。
2 基于信道参数的无线电地图
RSS、CSI等直接测量到的信道参数为记录指标,未对信道参数进行深度挖掘和进一步处理,常用于用户定位等粗粒度应用中,且易受测量设备影响。用计算机仿真、机器学习等方法降低信道参数测量中的巨大开销。其具有数据处理需求较低、环境的抽象能力低和易受硬件个体差异影响的特点。
2.1 指纹匹配算法
指纹是设备在不同位置的多个信号特征的比喻。通常,指纹的性能可以通过时间稳定性和空间区分度进行评价。
该算法主要包括,离线测量与在线应用两部分。离线测量对目标区域内的信道参数(通常为RSS)进行密集测量以构建无线电地图,用网格采样法采样格点。通过某种分类方法将在线测量RSS与离线测量匹配从而估计出在线设备的位置。
接收信号强度(Received Signal Strength,RSS),描述了一小段时间内的平均接收信号功率;一般而言,RSS随着距离增大而衰减。多径效应破坏了RSS与距离的关系,使得RSS稳定性较差,因此RSS大多用来实现定位等粗粒度的感知任务。
![]()
经典的RSS模型 其中, γ 为以分贝( dB ) 为单位的 RSS 值, d 为发射天线到接收天线的距离,α 为路径损耗指数, β 为传播距离为 1 m 时的平均 RSS , ξ 通常建模为均值为 0 、 方差为的高斯随机变量,用以描述传播过程中的阴影效应。
早期,主要关注分类原理对定位精度的影响,分别提出基于概率模型分类器、机器学习分类器等,随着研究深入,希望结合多种指纹和分类器,提出DIFMIC算法。该算法结合了RSS指纹、HLF(双曲位置指纹)和DIFF(差分指纹),并且使用K最近邻、随机森林、朴素贝叶斯和AdaBoost四种分类器。
2.2 信道图算法
基于特征提取与数据降维的信道图算法,去除繁琐的离线测量阶段,仅利用在线测量得到的CSI构建无线电地图。
信道状态信息(Channel State Information,CSI),描述了无线信道的相位和幅度信息。CSI的相位信息对未知变化极为敏感,可用来实现手势识别、呼吸率探测等细粒度的感知任务。
![]()
经典的多径CSI的频域模型 其中, h ( f ) 为信道频域响应, L 为传播径数量,为第 l 条传播径的复增益,
为第 l 条传播径的传播时间( Time of Arrival, ToA )。
一致性指标表示原空间(即终端所处的三维或二维空间)中接近的点在变换后的接近程度,而可信度指标表示变换后接近的点在原空间中的接近程度,提取方法必须具有较好的一致性和可信度才能保留终端的局部位置关系。上述两个指标既可以衡量特征提取的结果,也可以衡量最终信道图的质量。随后采用数据降维算法将高维特征降维以获取信道图。
常用的数据降维算法有主成分分析、Sammon映射与自动编码器。
2.3 RadioUNet算法
进一步解决离线测量难题,提出使用基于卷积神经网络的无线信道仿真算法产生用于构建无线电地图的RSS数据,从而省去费时费力的测量过程。算法有纯信道仿真数据定位及结合信道仿真和部分实测数据两种工作模式,第二种具有更强的鲁棒性,算法预测精度超过Tensor Completion、RBF Interpolation、MLP Tomography等其余先进算法。
3 基于通信性能的无线电地图
以LoS/NLoS通信场景、中断概率、通信速率等更加抽象的通信性能作为指标,更能直观反映环境的特征,能服务于通信盲区检测、UAV路径规划等更多应用,但其仍是粗粒度的,还需要大量测量工作。有折中的数据处理需求和环境抽象能力,具有较高的应用价值。
3.1 基于LoS存在性的分区回归算法
LoS径的遮挡程度往往可以简单直观的反映某处的通信性能。
基于分区回归的无线电地图构建算法根据无人机UAV测得的RSS将城市划分为LoS区域、半遮挡区域以及NLoS区域等多个区域,从而构建大致的通信性能地图。算法巧妙地引入分区的概念,不必再以网格采样的方法进行密集测量。在降低采样需求的同时提高了精度。还有,基于两分区(LoS和NLoS)模型的三维城市地图重建算法,当户外用户足够密集时将误差缩小至数米。
3.2 基于中断概率的同步导航与无线电地图构建算法
在对可靠性要求较高的应用中,链接中断概率是一个重要的通信性能指标。针对UAV自主路线规划提出一种同步导航与无线电地图构建SNARM算法。结合基于深度强化学习的路径规划和基于中断概率的无线电地图,不需要先验信息自主尝试,引入地图同步估计与辅助可大大减少尝试时间。
3.3 速率图算法
毫米波技术的成熟使车用通信(Vehicle-to-Everything,V2X)成为可能,不同V2X有不同传输速率要求。以车流量、天线阵列位置和基站密度为输入量,对传输速率进行仿真,验证V2X应用可行性。
4 基于无线环境几何特征的无线电地图
在毫米波信道的建模中往往仅考虑LoS径和单次反射径,极大简化了信道模型。此模型中,基站和反射体的位置对用户信道起了决定性作用,而记录环境中主要反射体的位置坐标的地图便是一种基于无线环境几何特征的无线电地图。其优秀的环境抽象能力和独立于接收硬件的的特点被认为具有潜力的无线电地图技术之一。但其需要复杂且庞大的数据处理过程。
4.1 基于虚拟锚的反射体感知算法
虚拟锚(Virtual Anchor,VA)是基站关于反射体的镜像。当基站和平面反射体位置固定时,无论用户怎么移动,VA不会动,就大大简化了平面反射体的描述和处理。

但由于传播环境的复杂性,用户通常只能接收部分反射信号,仅凭单个位置的测量难以给出场景中所有虚拟锚的位置。使用基于期望传播的同时定位与构图(Belief Propagaton-based Simultaneous Localization and Mapping,BP-SLAM)算法。SLAM算法能够同时完成用户定位和移动中观测到的所有虚拟锚的整合。其通过用户设备测量值的时间积累完成构建,但未利用多设备并行以提高效率。
4.2 基于测量值随插即用和众包的BP-SLAM算法
文献[33]算法通过扩展经典的BP-SLAM算法进行多用户间测量偏差的自动估计与补偿,实现了即插即用式的协作框架。允许多用户共享虚拟锚测量结果并合作构建、优化虚拟锚地图的众包SLAM算法。
多个基站会使无线电地图中虚拟锚数量过大,文献[34]将同一个平面反射体的所有虚拟锚整合为一个主虚拟锚(Master Virtual Anchor,MVA),从而推导出完整的虚拟锚地图。
