spfa判断负环

题目

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你判断图中是否存在负权回路。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

如果图中存在负权回路,则输出 Yes,否则输出 No

数据范围

1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。

输入样例:

3 3
1 2 -1
2 3 4
3 1 -4

输出样例:

Yes

 

解 

#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>

using namespace std;

const int N = 2010, M = 1e5 + 10;

int e[M], ne[M], h[N], w[M], idx;
int dist[N], cnt[N];//cnt[]用于记录到达这个点最短路径所需要的边数
bool st[N];
int n, m;

//连接边操作
void add(int a, int b, int c){
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

bool spfa(){
    queue<int> q;
    //让全部点入队,避免存在从1开始无法到达情况
    for(int i = 1; i <= n; i++){
        q.push(i);
        st[i] = true;
    }
    
    while(q.size()){//老样子,宽搜
        auto t = q.front();
        q.pop();
        
        st[t] = false;//记得让让它出列
        
        for(int i = h[t]; i != -1; i = ne[i]){
            int j = e[i];
            if(dist[j] > dist[t] + w[i]){
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                
                //如果到达这个点需要走n条边,根据抽屉原理一定有负权环
                if(cnt[j] >= n)return true;
                if(!st[j]){
                    st[j] = true;
                    q.push(j);
                }
            }
        }
    }
    
    return false;//遍历完,不存在负权环
}

int main(){
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    
    while(m--){
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    
    if(spfa())printf("Yes");
    else printf("No");
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值