第一节 神经网络概述

 1.神经元与矩阵关系

2.若神经元全为串联起来的(即都为线性函数)会导致如下问题

3.激活函数特点(能求导)和常用的两个激活函数

4.激活函数位置

5.另一个角度理解激活函数(相当于非线性函数的组合来拟合)图中的即为用两个relu函数的线性组合来拟合仅用线性函数无法拟合的分段函数

6.所有参数可以统一为θ

7.深度学习的训练过程

如图分为三步

前向过程得到损失函数

梯度回传实现优化过程

8.如何优化的?

如图当前值减掉学习率乘以当前的梯度。

得到梯度时会用到链式求导

9.优化时用的是这个公式(任何的都能又这个得到)

10.过拟合和欠拟合

注意过拟合 (指拟合到了每一个点 ,可能是层数太多了导致,这种得到的并不光滑,不是我们想要的)

故层数过多不一定好

11.神经网络的缺点和优点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值