1.神经元与矩阵关系
2.若神经元全为串联起来的(即都为线性函数)会导致如下问题

3.激活函数特点(能求导)和常用的两个激活函数

4.激活函数位置


5.另一个角度理解激活函数(相当于非线性函数的组合来拟合)图中的即为用两个relu函数的线性组合来拟合仅用线性函数无法拟合的分段函数

6.所有参数可以统一为θ

7.深度学习的训练过程
如图分为三步
前向过程得到损失函数
梯度回传实现优化过程

8.如何优化的?
如图当前值减掉学习率乘以当前的梯度。

得到梯度时会用到链式求导

9.优化时用的是这个公式(任何的都能又这个得到)

10.过拟合和欠拟合
注意过拟合 (指拟合到了每一个点 ,可能是层数太多了导致,这种得到的并不光滑,不是我们想要的)
故层数过多不一定好


11.神经网络的缺点和优点

3064

被折叠的 条评论
为什么被折叠?



