Problem: 15. 三数之和
思路
- 首先使用快排将数组排序,这样数组就可以分为(负数)(非负整数)这两个部分;
- 然后对于可能的三元组(正序)
- 如果第一位是正数,不可能出现
- 确定第一位为0,处理下[0,0,0]这种可能
- 确定第一位为负数,遍历所有负数,然后在非负整数部分找到两数之和==0-该负数
复杂度
时间复杂度:
添加时间复杂度, 示例: O ( n 2 ) O(n^2) O(n2)
空间复杂度:
添加空间复杂度, 示例: O ( 2 n ) O(2n) O(2n)
Code
const int MAX = 100005;
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(),nums.end());
if(nums[0]>=0){// 无负数的情况
if(nums[0]==0&&nums[1]==0&&nums[2]==0){
result.emplace_back(vector<int>{0,0,0});
}
return result;
}
// 找到第一个非负整数
int firstGt0 = -1;
for(int i=0;i<nums.size();++i){
if(nums[i]>=0){
firstGt0 = i;
break;
}
}
// 全为负数的情况
if(firstGt0 == -1)return result;
// 处理下[0,0,0]这种情况,因为下面的遍历是确定了首位为负数。
if(firstGt0+2<nums.size()&&nums[firstGt0]==0&&nums[firstGt0+1]==0&&nums[firstGt0+2]==0)result.emplace_back(vector<int>{0,0,0});
// 确定一个负数,然后找到两数之和==0-该负数(共O(N^2)时间复杂度)
int target =0;
unordered_map<int,bool>existMap;
for(int i=0;i<firstGt0;++i){// 外层遍历所有负数
if(i>0&&nums[i]==nums[i-1])continue;// 跳过重复数,保证res里每个三元组【第一个数】都不同
target = 0 - nums[i];
// 两数之和 O(N)时间复杂度
int tmp = MAX;// 表示刚开始遍历第二个数(记录上一次出现的第二个数,即target-nums[j])
for(int j=i+1;j<nums.size();++j){// 内层负责找两数之和等于0-该负数
int second = target-nums[j];
if(tmp==second)continue;// 跳过重复数,保证res里每个三元组【第二个数】都不同
if(existMap[second]){
// (res里面的每个三元组已经是升序的了)
result.emplace_back(vector<int>{nums[i],second,nums[j]});// <负数、整数、正数>
tmp = tmp!=second ? second : MAX;// 保证res里每个三元组第二个数都不同
}
existMap[nums[j]] = true;
}
existMap.clear();
}
return result;
}
};