等比数列求和公式和进制的联系

基础知识

  1. 等比数列首项为a1,通项公式an = a1*qn-1
  2. 任意进制的数都可以写成多项式:
    例如:(1101)2进制 = 1×23 + 1×22 + 0×21 + 1×20
    再如:(1234)8进制 = 1×83 + 2×82 + 3×81 + 4×80
暂且令a1 = 1,q = 2:
  • 前四项求和为例:
    S4 = 24 - 1 = 23+22+21+20
    ( 10000 − 1 ) 2 进制 = ( 1111 ) 2 进制 = 2 3 + 2 2 + 2 1 + 2 0 (10000 - 1)_{2进制} =(1111)_{2进制} = 2^3+2^2+2^1+2^0 (100001)2进制=(1111)2进制=23+22+21+20
又令 a1 = 1,q = 8:
  • 还是以前四项求和为例:
    • S4 = 8 4 − 1 8 − 1 \frac{8^4-1}{8-1} 81841 = 8 4 − 1 7 = 8 3 + 8 2 + 8 1 + 8 0 \frac{8^4-1}{7} = 8^3 + 8^2 + 8^1 + 8^0 7841=83+82+81+80
      ( 10000 − 1 ) 8 进制 = ( 7777 ) 8 进制 (10000 - 1)_{8进制} =(7777)_{8进制} (100001)8进制=(7777)8进制
      此时此刻除以7那不就是:
      ( 7777 ) 8 进制 ( 7 ) 8 进制 = ( 1111 ) 8 进制 = 8 3 + 8 2 + 8 1 + 8 0 \dfrac{(7777)_{8进制}}{(7)_{8进制}} = (1111)_{8进制} = 8^3 + 8^2 + 8^1 + 8^0 (7)8进制7777)8进制=(1111)8进制=83+82+81+80

以此类推,其他进制屡试不爽(当然最好是整数进制,不然会烧脑)。而a1只是一个系数,可以提出来,并不打扰它和q进制的美妙联系
a 1 ∗ ( q n − 1 + q n − 2 + . . . . . . + q 1 + q 0 ) = a 1 ∗ q n − 1 q − 1 a_1*(q^{n-1} + q^{n-2} + ...... + q^1 + q^0) = a_1*\dfrac{q^n - 1}{q-1} a1(qn1+qn2+......+q1+q0)=a1q1qn1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值