基础知识
- 等比数列首项为a1,通项公式an = a1*qn-1
- 任意进制的数都可以写成多项式:
例如:(1101)2进制 = 1×23 + 1×22 + 0×21 + 1×20
再如:(1234)8进制 = 1×83 + 2×82 + 3×81 + 4×80
暂且令a1 = 1,q = 2:
- 前四项求和为例:
S4 = 24 - 1 = 23+22+21+20
( 10000 − 1 ) 2 进制 = ( 1111 ) 2 进制 = 2 3 + 2 2 + 2 1 + 2 0 (10000 - 1)_{2进制} =(1111)_{2进制} = 2^3+2^2+2^1+2^0 (10000−1)2进制=(1111)2进制=23+22+21+20
又令 a1 = 1,q = 8:
- 还是以前四项求和为例:
- S4 =
8
4
−
1
8
−
1
\frac{8^4-1}{8-1}
8−184−1 =
8
4
−
1
7
=
8
3
+
8
2
+
8
1
+
8
0
\frac{8^4-1}{7} = 8^3 + 8^2 + 8^1 + 8^0
784−1=83+82+81+80
( 10000 − 1 ) 8 进制 = ( 7777 ) 8 进制 (10000 - 1)_{8进制} =(7777)_{8进制} (10000−1)8进制=(7777)8进制
此时此刻除以7那不就是:
( 7777 ) 8 进制 ( 7 ) 8 进制 = ( 1111 ) 8 进制 = 8 3 + 8 2 + 8 1 + 8 0 \dfrac{(7777)_{8进制}}{(7)_{8进制}} = (1111)_{8进制} = 8^3 + 8^2 + 8^1 + 8^0 (7)8进制(7777)8进制=(1111)8进制=83+82+81+80
- S4 =
8
4
−
1
8
−
1
\frac{8^4-1}{8-1}
8−184−1 =
8
4
−
1
7
=
8
3
+
8
2
+
8
1
+
8
0
\frac{8^4-1}{7} = 8^3 + 8^2 + 8^1 + 8^0
784−1=83+82+81+80
以此类推,其他进制屡试不爽(当然最好是整数进制,不然会烧脑)。而a1只是一个系数,可以提出来,并不打扰它和q进制的美妙联系
a
1
∗
(
q
n
−
1
+
q
n
−
2
+
.
.
.
.
.
.
+
q
1
+
q
0
)
=
a
1
∗
q
n
−
1
q
−
1
a_1*(q^{n-1} + q^{n-2} + ...... + q^1 + q^0) = a_1*\dfrac{q^n - 1}{q-1}
a1∗(qn−1+qn−2+......+q1+q0)=a1∗q−1qn−1